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Section I

Prefix Tuning

(Li and Liang, 2021)
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Full Fine-tuning

For a text generation task, given the input  and output , the full fine-tuning

objective is defined as

where

: indices of output tokens

 is the -th token of 
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Prefix Tuning

Add  virtual tokens to the latent representations on each layer

Number of virtual tokens  is a hyperparameter

 in this example
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Latent Representations

Depending whether  is the virtual token or not, on the -th layer, we have

: prefix index set (e.g., )

 are fixed and  are the only trainable parameters
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Prefix Projection

The prefix embeddings can also be computed via

where

 is a two-layer feedforward NN with the Tanh activation

Empirically, this project produced more stable results than directly training the

embedding 
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With Encoder-Decoder Framework

The idea of prefix tuning in the encoder-decoder framework is similar to the

autoregressive framework, except the position of prefix embeddings
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Experiment: Low-data Settings

In low-data setting, prefix-tuning is better than full fine-tuning (on both

summarization and data-to-text generation)
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Experiment: Prefix Length

Increase the size of prefix embeddings will increase the performance, until a

certain threshold (task-dependent)
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Experiment: Two Alternative Designs

Embedding only

Only use the prefix embeddings in the input layer

Higher-layer representations are computed by the Transformer

Infix tuning

Add virtual tokens between the input and output, as
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Experiment: Results
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Initialization

Initialization with task-relevant words works better than task-irrelevant words

Initialization with word embeddings works better than random initialization
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Prefix Tuning vs. Discrete Prompt Optimization

Why prefix tuning is better

From the initialization

From the optimization perspective

Relation
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Section II

Low-Rank Adaptation (LoRA)

(Hu et al., 2021)
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Fine-tuning

Given a pair of example 

: pre-trained model parameter

: adapater produced by task-specific fine-tuning

 has the same size as 

 is the function of 

 has a much smaller size than 
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What in ?

One sub-layer in the Transformer module is the multi-head attention. With 

heads

For 

Compute

Concatenate multiple heads as

Parameters

16



What in ? (II)

Another sub-layer in the Transformer encoder module

Parameters
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Llama-2

Print the model architecture using model.parameters()

(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaAttention(

(q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()

        )
(mlp): LlamaMLP(

(gate_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(up_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear8bitLt(in_features=11008, out_features=4096, bias=False)

          (act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()

)
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Low-Rank Adapter

For any parameter matrix , the low-rank adapter 

where

 is the rank
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Initialization

Initialize  with a Gaussian distribution

Initialize  as zero

Therefore, initially

Additionally,  is scaled by 
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Applying LoRA to Transformer

The discussion is limited to attention weights, e.g.,

Can be also used on other metrics, for example, the MLP sublayer
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Results
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Which Weight Matrices?
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Optimal Rank?
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Last Comments

Pay attention to the variable names. For example, in Falcon

(0-31): 32 x FalconDecoderLayer(
(self_attention): FalconAttention(

(maybe_rotary): FalconRotaryEmbedding()
(query_key_value): Linear8bitLt(in_features=4544, out_features=4672, bias=False)
(dense): Linear8bitLt(in_features=4544, out_features=4544, bias=False)
(attention_dropout): Dropout(p=0.0, inplace=False)

)
(mlp): FalconMLP(

(dense_h_to_4h): Linear8bitLt(in_features=4544, out_features=18176, bias=False)
(act): GELU(approximate='none')
(dense_4h_to_h): Linear8bitLt(in_features=18176, out_features=4544, bias=False)

)
(input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)

)
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PEFT Library
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PEFT Library

PEFT (Parameter-Efficient

Fine-Tuning) is a library for

efficiently adapting large

pretrained models to various

downstream applications

without fine-tuning all of a

model’s parameters
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LoRA in PEFT

A simple example of configuring LoRA in PEFT

from peft import LoraConfig, TaskType

lora_config = LoraConfig(
    r=16,
    target_modules=["q_proj", "v_proj"],
    task_type=TaskType.CAUSAL_LM,
    lora_alpha=32
)

More information
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https://huggingface.co/docs/peft/en/tutorial/peft_model_config


Thank You!
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