
CS 6501 Natural Language
Processing

Efficient Fine-tuning for LLMs

Yangfeng Ji

Information and Language Processing Lab

Department of Computer Science

University of Virginia

https://uvanlp.org/

1

https://uvanlp.org/


Section I

Prefix Tuning

(Li and Liang, 2021)

2

file:///Users/yangfeng/Work/Projects/nlp-course-slides/cs6770-2025fall/lec10-efficient/main.md


Full Fine-tuning

For a text generation task, given the input  and output , the full fine-tuning

objective is defined as

where

: indices of output tokens

 is the -th token of 

3



Prefix Tuning

Add  virtual tokens to the latent representations on each layer

Number of virtual tokens  is a hyperparameter

 in this example

4



Latent Representations

Depending whether  is the virtual token or not, on the -th layer, we have

: prefix index set (e.g., )

 are fixed and  are the only trainable parameters

5



Prefix Projection

The prefix embeddings can also be computed via

where

 is a two-layer feedforward NN with the Tanh activation

Empirically, this project produced more stable results than directly training the

embedding 

6



With Encoder-Decoder Framework

The idea of prefix tuning in the encoder-decoder framework is similar to the

autoregressive framework, except the position of prefix embeddings

7



Experiment: Low-data Settings

In low-data setting, prefix-tuning is better than full fine-tuning (on both

summarization and data-to-text generation)

8



Experiment: Prefix Length

Increase the size of prefix embeddings will increase the performance, until a

certain threshold (task-dependent)

9



Experiment: Two Alternative Designs

Embedding only

Only use the prefix embeddings in the input layer

Higher-layer representations are computed by the Transformer

Infix tuning

Add virtual tokens between the input and output, as

10



Experiment: Results

11



Initialization

Initialization with task-relevant words works better than task-irrelevant words

Initialization with word embeddings works better than random initialization

12



Prefix Tuning vs. Discrete Prompt Optimization

Why prefix tuning is better

From the initialization

From the optimization perspective

Relation

13



Section II

Low-Rank Adaptation (LoRA)

(Hu et al., 2021)

14

https://arxiv.org/abs/2101.00190


Fine-tuning

Given a pair of example 

: pre-trained model parameter

: adapater produced by task-specific fine-tuning

 has the same size as 

 is the function of 

 has a much smaller size than 

15



What in ?

One sub-layer in the Transformer module is the multi-head attention. With 

heads

For 

Compute

Concatenate multiple heads as

Parameters

16



What in ? (II)

Another sub-layer in the Transformer encoder module

Parameters

17



Llama-2

Print the model architecture using model.parameters()

(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaAttention(

(q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()

        )
(mlp): LlamaMLP(

(gate_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(up_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear8bitLt(in_features=11008, out_features=4096, bias=False)

          (act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()

)

18



Low-Rank Adapter

For any parameter matrix , the low-rank adapter 

where

 is the rank

19



Initialization

Initialize  with a Gaussian distribution

Initialize  as zero

Therefore, initially

Additionally,  is scaled by 

20



Applying LoRA to Transformer

The discussion is limited to attention weights, e.g.,

Can be also used on other metrics, for example, the MLP sublayer

21



Results

22



Which Weight Matrices?

23



Optimal Rank?

24



Last Comments

Pay attention to the variable names. For example, in Falcon

(0-31): 32 x FalconDecoderLayer(
(self_attention): FalconAttention(

(maybe_rotary): FalconRotaryEmbedding()
(query_key_value): Linear8bitLt(in_features=4544, out_features=4672, bias=False)
(dense): Linear8bitLt(in_features=4544, out_features=4544, bias=False)
(attention_dropout): Dropout(p=0.0, inplace=False)

)
(mlp): FalconMLP(

(dense_h_to_4h): Linear8bitLt(in_features=4544, out_features=18176, bias=False)
(act): GELU(approximate='none')
(dense_4h_to_h): Linear8bitLt(in_features=18176, out_features=4544, bias=False)

)
(input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)

)

25



PEFT Library

26



PEFT Library

PEFT (Parameter-Efficient

Fine-Tuning) is a library for

efficiently adapting large

pretrained models to various

downstream applications

without fine-tuning all of a

model’s parameters

27



LoRA in PEFT

A simple example of configuring LoRA in PEFT

from peft import LoraConfig, TaskType

lora_config = LoraConfig(
    r=16,
    target_modules=["q_proj", "v_proj"],
    task_type=TaskType.CAUSAL_LM,
    lora_alpha=32
)

More information
28

https://huggingface.co/docs/peft/en/tutorial/peft_model_config


Thank You!

29


