
CS 6770 Natural Language
Processing
Recurrent Neural Networks Language Models

Yangfeng Ji

Information and Language Processing Lab

Department of Computer Science

University of Virginia

Overview

1. Neural Network Language Models

2. Recurrent Neural Networks

3. Computation Graph

4. RNN Language Modeling

5. Challenge of Training RNNs

1

Neural Network Language Models

A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any

nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗 = [𝒗𝑥1
, 𝒗𝑥2

, 𝒗𝑥3
, 𝒗𝑥4
] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model

[Bengio et al., 2001], which has a similar network architecture as the

one discussed text classification.

3

A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any

nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗 = [𝒗𝑥1
, 𝒗𝑥2

, 𝒗𝑥3
, 𝒗𝑥4
] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model

[Bengio et al., 2001], which has a similar network architecture as the

one discussed text classification.

3

A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any

nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗 = [𝒗𝑥1
, 𝒗𝑥2

, 𝒗𝑥3
, 𝒗𝑥4
] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model

[Bengio et al., 2001], which has a similar network architecture as the

one discussed text classification.

3

A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any

nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗 = [𝒗𝑥1
, 𝒗𝑥2

, 𝒗𝑥3
, 𝒗𝑥4
] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model

[Bengio et al., 2001], which has a similar network architecture as the

one discussed text classification.

3

A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any

nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗 = [𝒗𝑥1
, 𝒗𝑥2

, 𝒗𝑥3
, 𝒗𝑥4
] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model

[Bengio et al., 2001], which has a similar network architecture as the

one discussed text classification.

3

A Neural Probabilistic Language Model

The first paragraph of the paper A Neural Probabilistic Language Model
[Bengio et al., 2001]

Curse of dimensionality
The sample complexity is an exponential function of the

dimensionality of data
1

1
For more precise description, please refer to [Shalev-Shwartz and Ben-David, 2014]

4

A Neural Probabilistic Language Model

The first paragraph of the paper A Neural Probabilistic Language Model
[Bengio et al., 2001]

Curse of dimensionality
The sample complexity is an exponential function of the

dimensionality of data
1

1
For more precise description, please refer to [Shalev-Shwartz and Ben-David, 2014]

4

A Neural Language Model with Fixed Window Size
Improvement over 𝑛-gram language

models

▶ Less parameters (with large 𝑛’s)

▶ No sparsity problem

▶ No smoothing is needed

Remaining issues

▶ Fixed window size – similar to

𝑛-gram models

▶ No explicit modeling of word order

beyond the window size

▶ Same word will be computed 𝑘 times

along the sliding window, where 𝑘 is

the window size

We need a new neural network architecture that can read words

continuously along predictions

5

A Neural Language Model with Fixed Window Size
Improvement over 𝑛-gram language

models

▶ Less parameters (with large 𝑛’s)

▶ No sparsity problem

▶ No smoothing is needed

Remaining issues

▶ Fixed window size – similar to

𝑛-gram models

▶ No explicit modeling of word order

beyond the window size

▶ Same word will be computed 𝑘 times

along the sliding window, where 𝑘 is

the window size

We need a new neural network architecture that can read words

continuously along predictions

5

A Neural Language Model with Fixed Window Size
Improvement over 𝑛-gram language

models

▶ Less parameters (with large 𝑛’s)

▶ No sparsity problem

▶ No smoothing is needed

Remaining issues

▶ Fixed window size – similar to

𝑛-gram models

▶ No explicit modeling of word order

beyond the window size

▶ Same word will be computed 𝑘 times

along the sliding window, where 𝑘 is

the window size

We need a new neural network architecture that can read words

continuously along predictions

5

Recurrent Neural Networks

Recurrent Neural Networks (RNNs)

A simple RNN is defined by the following recursive function

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (4)

and depicted as

· · · 𝒉𝑡−1 𝒉𝑡 · · ·

𝒙𝑡−1 𝒙𝑡

where

▶ 𝒉𝑡−1: hidden state at time step 𝑡 − 1

▶ 𝒙𝑡 : input at time step 𝑡

▶ 𝒉𝑡 : hidden state at time step 𝑡

7

A Simple Transition Function

In the simplest case, the transition function 𝒇 is defined with an

element-wise Sigmoid function and a linear transformation of 𝒙𝑡 and

𝒉𝑡−1

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) = 𝝈(Wℎ𝒉𝑡−1 +W𝑖𝒙𝑡 + 𝒃) (5)

where

▶ 𝒙𝑡 : input word embedding

▶ 𝒉𝑡−1: hidden statement from previous time step

▶ Wℎ : parameter matrix for hidden states

▶ W𝑖 : parameter matrix for inputs

▶ 𝒃: bias term (also a parameter)

8

Sigmoid Function

A Sigmoid function with one-dimensional input 𝑥 ∈ (−∞,∞)

𝜎(𝑥) = 1

1 − 𝑒−𝑥

The potential numeric issue caused by the Sigmoid function

▶ 𝜎(𝑥) → 1 with 𝑥 ≫ 6

▶ 𝜎(𝑥) → 0, 𝑥 ≪ −6

The output of the Sigmoid function will approximate a constant,

when the input value is beyond certain ranges

9

Unfolding RNNs

We can unfold this recursive definition of a RNN

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (6)

as

𝒉0 𝒉1 · · · 𝒉𝑡−1 𝒉𝑡 · · ·

𝒙1 𝒙𝑡−1 𝒙𝑡

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒉𝑡−2))
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , 𝒉𝑡−3)))
= · · ·
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , · · · 𝒇 (𝒙1 , 𝒉0) · · ·))) (7)

10

Unfolding RNNs

We can unfold this recursive definition of a RNN

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (6)

as

𝒉0 𝒉1 · · · 𝒉𝑡−1 𝒉𝑡 · · ·

𝒙1 𝒙𝑡−1 𝒙𝑡

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒉𝑡−2))
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , 𝒉𝑡−3)))
= · · ·
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , · · · 𝒇 (𝒙1 , 𝒉0) · · ·))) (7)

10

Base Condition

Base condition defines the starting point of the recursive computation

𝒉0 𝒉1 · · ·

𝒙1

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , · · · 𝒇 (𝒙1 , 𝒉0) · · ·))) (8)

▶ 𝒉0: zero vector or parameter

▶ 𝒙1: input at time 𝑡 = 1

11

RNN for Sequential Prediction

In general, RNNs can be used for any sequential modeling tasks

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (9)

𝑃(𝑌𝑡 ; 𝒉𝑡) = softmax(𝑾𝑜𝒉𝑡 + 𝒃𝑜) (10)

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

12

Sequential Modeling as Classification

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at each time step 𝑡

𝑦̂𝑡 = argmax

𝑦

𝑃(𝑌𝑡 = 𝑦; 𝒉𝑡) (11)

▶ Loss at single time step 𝑡

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) = − log𝑃(𝑦𝑡 ; 𝒉𝑡) (12)

▶ The total loss

ℓ =

𝑇∑
𝑡=1

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) (13)

13

Sequential Modeling as Classification

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at each time step 𝑡

𝑦̂𝑡 = argmax

𝑦

𝑃(𝑌𝑡 = 𝑦; 𝒉𝑡) (11)

▶ Loss at single time step 𝑡

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) = − log𝑃(𝑦𝑡 ; 𝒉𝑡) (12)

▶ The total loss

ℓ =

𝑇∑
𝑡=1

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) (13)

13

Sequential Modeling as Classification

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at each time step 𝑡

𝑦̂𝑡 = argmax

𝑦

𝑃(𝑌𝑡 = 𝑦; 𝒉𝑡) (11)

▶ Loss at single time step 𝑡

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) = − log𝑃(𝑦𝑡 ; 𝒉𝑡) (12)

▶ The total loss

ℓ =

𝑇∑
𝑡=1

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) (13)

13

Computation Graph

Forward Operations

For simplicity, consider the example of a two-layer neural network

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(14)

A neural network is a composition of some basic functions and

operations. For example

▶ the Sigmoid function 𝜎(·)
▶ matrix transpose (𝒘(𝑜))T

▶ matrix-vector multiplication W(1)𝒙

15

Forward Graph

The computation graph of the two-layer neural network
2

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

2
For simplicity, the transpose operation blocks are ignored from the graph

16

Backward Operations

Similarly, the gradient of neural network parameters are computed

with a series of backward operations associated with the derivative of

some basic function. For example

▶ d𝑏𝑥
d𝑥 = 𝑏

▶ d log(𝑥)
d𝑥 = 1

𝑥

▶ d𝜎(𝑥)
d𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

▶ d𝒂T𝒙
d𝒙 = 𝒂

▶ dW𝒙
dW =


𝒙T

...

𝒙T


17

Backward Graph

▶ The gradient of each operations can be computed individually

based on the input and output

▶ With the chain rule, gradient of the loss function with respect to

any parameter is a sequence of multiplications of individual

gradients

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

For example,

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
)

·
𝜕𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

18

Backward Graph

▶ The gradient of each operations can be computed individually

based on the input and output

▶ With the chain rule, gradient of the loss function with respect to

any parameter is a sequence of multiplications of individual

gradients

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

For example,

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
)

·
𝜕𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

18

Example: MiniTorch

A screenshot from the MiniTorch library
3

3
A teaching library of PyTorch developed by Sasha Rush and Ge Gao

19

https://minitorch.github.io/

Computation Graph

Perform the forward/backward step with a graph of basic operations

(e.g., PyTorch, Tensorflow)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

▶ Modular implementation: implement each module with its

forward/backward operations together

▶ Automatic differentiation: automatically run with the backward

step

20

Computation Graph

Perform the forward/backward step with a graph of basic operations

(e.g., PyTorch, Tensorflow)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

▶ Modular implementation: implement each module with its

forward/backward operations together

▶ Automatic differentiation: automatically run with the backward

step

20

Example: Micrograd

Micrograd is an extremely simple example to illustrate the idea of

using autograd to implementing the backpropagation algorithm.

Demo

21

https://github.com/karpathy/micrograd
https://colab.research.google.com/drive/1pbvhVZ9Qnt5BlHwDfzRnBU9cbMFTx-5N?usp=sharing

Example: Gradient Computation

Function

𝑓 (𝑎, 𝑏) = 2𝑎𝑏 + 𝑏2

The computation graph on forward and backward operations

22

RNN Language Modeling

Language Models

A language model defines the probability of 𝑥𝑡 given

𝒙 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑡−1) as

𝑃(𝑥𝑡 | 𝑥1 , . . . , 𝑥𝑡−1) (15)

and the joint probability as

𝑃(𝒙1:𝑇) = 𝑃(𝑥1) · 𝑃(𝑥2 | 𝑥1)
· · · · ·
·𝑃(𝑥𝑇 | 𝑥1 , 𝑥2 , . . . , 𝑥𝑇−1)

24

Language Modeling with RNNs

Using RNNs for language modeling

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

with two special tokens

{□, 𝑥1 , . . . , 𝑥𝑇 ,■}

25

RNN Language Models

For a given sentence {𝑥1 , . . . , 𝑥𝑡}, the input at time 𝑡 is word

embedding 𝒙𝑡

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

The probability distribution of next word 𝑋𝑡

𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1) =
exp(𝒘T

𝑜,𝑥𝒉𝑡−1)∑
𝑥′∈Vexp(𝒘T

𝑜,𝑥′𝒉𝑡−1)
(16)

where

▶ 𝒘𝑜,𝑥 is the output weight vector (parameter) associated with

word 𝑥

▶ V is the word vocabulary 26

Special Cases

Similar to statistical language modeling, there are also two special

cases that we need to consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

{□, 𝑥1 , . . . , 𝑥𝑇 ,■}

The corresponding prediction functions are defined as

▶ At time 𝑡 = 1

𝑃(𝑋1 = 𝑥) ∝ exp(𝒘T
𝑜,𝑥𝒉□) (17)

▶ At time 𝑡 = 𝑇

𝑃(𝑋𝑇 = ■ | 𝒙1:𝑇−1) ∝ exp(𝒘T
𝑜,𝑥𝒉𝑇−1) (18) 27

Challenge of Training RNNs

Objective

The training objective for each timestep is to predict the next token in

the text

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at step 𝑡, 𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1) =
exp(𝒘T

𝑜,𝑥𝒉𝑡−1)∑
𝑥′∈V exp(𝒘T

𝑜,𝑥′𝒉𝑡−1)

▶ Loss at step 𝑡, 𝐿𝑡 = − log𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1)

29

Gradients

Let 𝜽 denote all model parameters

𝜕ℓ

𝜕𝜽
=

𝑇∑
𝑡=1

𝜕𝐿𝑡
𝜕𝜽

(19)

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

Backpropagation Through Time [Rumelhart et al., 1985, BPTT]

30

Model Parameters

Before computing the gradient of each 𝐿𝑡 with respect to model

parameters, let us count how many parameters that we need consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Output parameter matrix 𝑾𝑜 = (𝒘𝑜,1 , . . . ,𝒘𝑜,𝑉)

▶ Input word embedding matrix 𝑿 = (𝒙1 , . . . , 𝒙𝑉)
▶ Neural network parameters 𝑾ℎ ,𝑾𝑖 , 𝒃

31

Model Parameters

Before computing the gradient of each 𝐿𝑡 with respect to model

parameters, let us count how many parameters that we need consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Output parameter matrix 𝑾𝑜 = (𝒘𝑜,1 , . . . ,𝒘𝑜,𝑉)
▶ Input word embedding matrix 𝑿 = (𝒙1 , . . . , 𝒙𝑉)

▶ Neural network parameters 𝑾ℎ ,𝑾𝑖 , 𝒃

31

Model Parameters

Before computing the gradient of each 𝐿𝑡 with respect to model

parameters, let us count how many parameters that we need consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Output parameter matrix 𝑾𝑜 = (𝒘𝑜,1 , . . . ,𝒘𝑜,𝑉)
▶ Input word embedding matrix 𝑿 = (𝒙1 , . . . , 𝒙𝑉)
▶ Neural network parameters 𝑾ℎ ,𝑾𝑖 , 𝒃

31

Backpropagation Through Time

Take time step 𝑡 as an example, we can take a look the gradient

computation of some specific parameters

▶ Output model parameter
𝜕𝐿𝑡
𝜕𝒘𝑜,·

▶ Neural network parameters, for example 𝑾ℎ

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
(𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(20)

Similar patterns for the other two neural network parameters 𝑾𝑖

and 𝒃

▶ Word embedding
𝜕𝐿𝑡
𝜕𝒙𝑡′

▶ E.g., word embedding 𝒙𝑡′ is the input of 𝒉𝑡 if 𝑡′ ≤ 𝑡, so ...

32

Backpropagation Through Time

Take time step 𝑡 as an example, we can take a look the gradient

computation of some specific parameters

▶ Output model parameter
𝜕𝐿𝑡
𝜕𝒘𝑜,·

▶ Neural network parameters, for example 𝑾ℎ

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
(𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(20)

Similar patterns for the other two neural network parameters 𝑾𝑖

and 𝒃

▶ Word embedding
𝜕𝐿𝑡
𝜕𝒙𝑡′

▶ E.g., word embedding 𝒙𝑡′ is the input of 𝒉𝑡 if 𝑡′ ≤ 𝑡, so ...

32

Backpropagation Through Time

Take time step 𝑡 as an example, we can take a look the gradient

computation of some specific parameters

▶ Output model parameter
𝜕𝐿𝑡
𝜕𝒘𝑜,·

▶ Neural network parameters, for example 𝑾ℎ

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
(𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(20)

Similar patterns for the other two neural network parameters 𝑾𝑖

and 𝒃

▶ Word embedding
𝜕𝐿𝑡
𝜕𝒙𝑡′

▶ E.g., word embedding 𝒙𝑡′ is the input of 𝒉𝑡 if 𝑡′ ≤ 𝑡, so ...

32

Challenges

For each timestep, we need to compute the gradient using the chain

rule:

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
(𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(21)

The chain rule of gradient will cause two potential problems in

training RNNs

▶ vanishing gradients:
𝜕𝐿𝑡
𝜕𝜽 → 0

▶ exploding gradients:
𝜕𝐿𝑡
𝜕𝜽 ≥ 𝑀

[Pascanu et al., 2013]

33

Exploding Gradients

Solution: norm clipping [Pascanu et al., 2013].

Consider the gradient 𝒈 = 𝜕ℓ
𝜕𝜽 ,

𝒈̂ ← 𝜏 · 𝒈

∥𝒈∥ (22)

when ∥𝒈∥ > 𝜏.

▶ Usually, 𝜏 = 3 or 5 in practice.

▶ Smaller gradient will cause slower learning progress

34

Vanishing Gradients

Solution:

▶ initialize parameters carefully

▶ replace hidden state transition function 𝝈(·)with other options

𝒇 (𝒙𝑡 , 𝒉𝑡−1) = 𝝈(Wℎ𝒉𝑡−1 +W𝑖𝒙𝑡 + 𝒃) (23)

▶ LSTM [Hochreiter and Schmidhuber, 1997]

▶ GRU [Cho et al., 2014]

35

Long Short-Term Memory

From the first page of the original paper proposing LSTM

[Hochreiter and Schmidhuber, 1997]

36

Long Short-Term Memory

Rather than directly taking input and hidden state as simple

transition function, LSTM relies on three cates to control how much
information it should take from input and hidden state before

combining them together

𝒊𝑡 = 𝜎(W𝑥𝑖𝒙𝑡 +Wℎ𝑖𝒉𝑡−1 +W𝑐𝑖 𝒄𝑡−1 + 𝒃𝑖)
𝒇𝑡 = 𝜎(W𝑥 𝑓 𝒙𝑡 +Wℎ 𝑓 𝒉𝑡−1 +W𝑐 𝑓 𝒄𝑡−1 + 𝒃 𝑓)
𝒄𝑡 = 𝒇𝑡 ◦ 𝒄𝑡−1 + 𝒊𝑡 ◦ tanh(W𝑥𝑐𝒙𝑡 +Wℎ𝑐𝒉𝑡−1 + 𝒃𝑐)
𝒐𝑡 = 𝜎(W𝑥𝑜𝒙𝑡 +Wℎ𝑜𝒉𝑡−1 +W𝑐𝑜 𝒄𝑡 + 𝒃𝑜)
𝒉𝑡 = 𝒐𝑡 ◦ tanh(𝒄𝑡)

where ◦ is the element-wise multiplication, {𝑾·} and {𝒃·} are

parameters. [Graves, 2013]

37

Reference

Bengio, Y., Ducharme, R., and Vincent, P. (2001).

A neural probabilistic language model.

In NIPS.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014).

On the properties of neural machine translation: Encoder-decoder approaches.

arXiv preprint arXiv:1409.1259.

Graves, A. (2013).

Generating sequences with recurrent neural networks.

arXiv preprint arXiv:1308.0850.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural computation, 9(8):1735–1780.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.

In International Conference on Machine Learning, pages 1310–1318.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).

Learning internal representations by error propagation.

Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.

Shalev-Shwartz, S. and Ben-David, S. (2014).

Understanding machine learning: From theory to algorithms.
Cambridge university press.

38

	Overview
	Neural Network Language Models
	Recurrent Neural Networks
	Computation Graph
	RNN Language Modeling
	Challenge of Training RNNs

