CS 6770 Natural Language
Processing

Recurrent Neural Networks Language Models

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

WA LLP

IVERSITY OF MR
WEOTION RO LANCIRGE PRICESSING LAB

Overview

. Neural Network Language Models

[y

. Recurrent Neural Networks

N

3. Computation Graph

4. RNN Language Modeling

. Challenge of Training RNNs

g1

Neural Network Language Models

A Neural Language Model with Fixed Window Size

books

laptops
———

U
(e00000000000]
w

(0000 0000 0000 0000)]

]

the students opened their
(M) (2 3 @

» Word indices: x1, X2, X3, X4

A Neural Language Model with Fixed Window Size

books

laptops
———

a z00
U
(e00000000000]
w
0000 0000 0000 0000 ,
! I I »[I) > Concatenated word embeddings
the students opened their 0= [vxl 7 O0x0,Ox3s vX4] (3)
D 2@ g® g®

» Word indices: x1, X2, X3, X4

A Neural Language Model with Fixed Window Size

books

laptops
———

a z00

» Hidden layer: f(-) could be any

U
nonlinear activation function
(e00000000000]
w h=f(Wo+by) (2)
0000 0000 0000 0000 .
[] I I W) > Concatenated word embeddings
the students opened their 0= [vxl 7 O0x0,Ox3s vX4] (3)
2 22 23 &

» Word indices: x1, X2, X3, X4

A Neural Language Model with Fixed Window Size

> Output distribution

books

laptops P(X5 | X1.4) = softmax(Uh+b;) € RI71
ﬂ (1)

’ v “ » Hidden layer: f(-) could be any
nonlinear activation function
(e00000000000]
w h=f(Wo+b) ()

0000 0000 0000 0000
[] I I W) > Concatenated word embeddings

the students opened their 0= [vxl 7 O0x0,Ox3s vX4] (3)

2D 2@ L® @

» Word indices: x1, X2, X3, X4

A Neural Language Model with Fixed Window Size

> Output distribution

books

laptops P(X5 | X1.4) = softmax(Uh+b;) € RI71
ﬁ (1)

’ v “ » Hidden layer: f(-) could be any
nonlinear activation function
(e00000000000]
w h=f(Wo+b) ()

0000 0000 0000 0000
[] I I T) > Concatenated word embeddings

the students opened their 0= [vxl 7 O0x0,Ox3s vX4] (3)

2D 2@ L® @

» Word indices: x1, X2, X3, X4
This is the very first neural neural language model
[Bengio et al., 2001], which has a similar network architecture as the
one discussed text classification.

A Neural Probabilistic Language Model

The first paragraph of the paper A Neural Probabilistic Language Model
[Bengio et al., 2001]

1 Introduction

A fundamental problem that makes language modeling and other learning problems diffi-
cult is the curse of dimensionality. It is particularly obvious in the case when one wants to
model the joint distribution between many discrete random variables (such as words in a
sentence, or discrete attributes in a data-mining task). For example, if one wants to model
the joint distribution of 10 consecutive words in a natural language with a vocabulary V' of
size 100,000, there are potentially 100000'® — 1 = 10%° — 1 free parameters.

*For more precise description, please refer to [Shalev-Shwartz and Ben-David, 2014]

A Neural Probabilistic Language Model

The first paragraph of the paper A Neural Probabilistic Language Model
[Bengio et al., 2001]

1 Introduction

A fundamental problem that makes language modeling and other learning problems diffi-
cult is the curse of dimensionality. It is particularly obvious in the case when one wants to
model the joint distribution between many discrete random variables (such as words in a
sentence, or discrete attributes in a data-mining task). For example, if one wants to model
the joint distribution of 10 consecutive words in a natural language with a vocabulary V' of
size 100,000, there are potentially 100000'° — 1 = 10°° — 1 free parameters.

Curse of dimensionality

The sample complexity is an exponential function of the
dimensionality of data®

*For more precise description, please refer to [Shalev-Shwartz and Ben-David, 2014]

A Neural Language Model with Fixed Window Size

mprovement over n-gram language

models
bonks tops > Less parameters (with large n’s)
> No sparsity problem
T — > No smoothing is needed
U
(e00000000000]
w

(o000 0000 0000 0000)]

]

the students opened their
(M) z(® x®) @

A Neural Language Model with Fixed Window Size

books

laptops
—

a z00

U

(e00000000000]

w

(o000 0000 0000 0000)]

]

the students opened their
(M) z(® x®) @

mprovement over n-gram language
models

> Less parameters (with large n’s)

> No sparsity problem

> No smoothing is needed
Remaining issues

> Fixed window size — similar to
n-gram models

> No explicit modeling of word order
beyond the window size

> Same word will be computed k times
along the sliding window, where k is
the window size

A Neural Language Model with Fixed Window Size

mprovement over n-gram language

models
books @ eops > Less parameters (with large n’s)
> No sparsity problem
F— » No smoothing is needed
v Remaining issues
CIIXIIITIIIN) > Fixed window size — similar to
w n-gram models

(o000 0000 0000 0000)]

> No explicit modeling of word order
I I I I beyond the window size

the = students opened their » Same word will be computed k times
2V 2@ g® g®

along the sliding window, where k is
the window size
We need a new neural network architecture that can read words
continuously along predictions

Recurrent Neural Networks

Recurrent Neural Networks (RNNSs)

A simple RNN is defined by the following recursive function

hi = f(xt, i) (4)
and depicted as
where

» h;_i: hidden state at time step t — 1
> x;: input at time step ¢

> h;: hidden state at time step ¢

A Simple Transition Function

In the simplest case, the transition function f is defined with an
element-wise Sigmoid function and a linear transformation of x; and
i

hy = f(x¢, hi-1) = 6(Wphy1 + Wix; + b) (5)

where

x;: input word embedding

h;_1: hidden statement from previous time step

>
>
> W),: parameter matrix for hidden states
> W;: parameter matrix for inputs

>

b: bias term (also a parameter)

Sigmoid Function

A Sigmoid function with one-dimensional input x € (—o0, c0)

1+

o(x) = 0.5

1—eX

The potential numeric issue caused by the Sigmoid function

> o(x) > 1withx > 6

> o(x) 20, x < -6

The output of the Sigmoid function will approximate a constant,
when the input value is beyond certain ranges

Unfolding RNNs

We can unfold this recursive definition of a RNN

hi = f(x¢, hi-1) (6)

10

Unfolding RNNs

We can unfold this recursive definition of a RNN

hi = f(x¢, hi-1) (6)

(=) @) @

hy

as

fxt, f(xi1, o))
= f(xt, f(xi-1, f(xt2, hi-3)))

f(xtrf(xt—lrf(xt—Zz e 'f(x1/ ho)--+))) (7)

10

Base condition defines the starting point of the recursive computation

(=)

hy = f(xe, f(xe-1, f(xe—2, - f(x1, ho)--+))) (8)

> hg: zero vector or parameter

> xi: input at time f =1

11

RNN for Sequential Prediction

In general, RNNs can be used for any sequential modeling tasks

hy
P(Yy; hy)

fxe, her))
softmax(W, h; + b,) (10)

12

Sequential Modeling as Classification

> Prediction at each time step ¢

7 = argmax P(Y; = y; hy) (11)
Y

13

Sequential Modeling as Classification

> Prediction at each time step ¢

7 = argmax P(Y; = y; hy) (11)
Y

> Loss at single time step ¢

Li(yt, §t) = —log P(y;; hy) (12)

13

Sequential Modeling as Classification

> Prediction at each time step ¢
7t = argmax P(Y; = y; hy) (11)
y
> Loss at single time step ¢

Li(yt, §t) = —log P(y;; hy) (12)

» The total loss

T
! = Z Lt(]/t, yt) (13)
t=1

13

Computation Graph

Forward Operations

For simplicity, consider the example of a two-layer neural network
PY=+1]x)=0 ((w<°>)To(w<l>x)) (14)

A neural network is a composition of some basic functions and
operations. For example

> the Sigmoid function o(-)
> matrix transpose (w®)T

> matrix-vector multiplication W) x

15

Forward Graph

The computation graph of the two-layer neural network®

p(Y | x)

w© —> (w(o))Tz

o]
wor —f Wiy |
X

>For simplicity, the transpose operation blocks are ignored from the graph
16

Backward Operations

Similarly, the gradient of neural network parameters are computed
with a series of backward operations associated with the derivative of
some basic function. For example

dbx _
> & =D

dlog(x) _
dx

d

> 0~ 5(x)(1 - 0(x))

> da"x _
Tdx

=a
»dwxl

>

=1
X

17

Backward Graph

> The gradient of each operations can be computed individually
based on the input and output

> With the chain rule, gradient of the loss function with respect to
any parameter is a sequence of multiplications of individual
gradients

—logp(Y | x)

]

: a((w(u))TZ)
(w2

1
1 do

w©) ¢--
Fw'®)

]

oW - x)

w <- wOh .y
IW(

1

R I

18

Backward Graph

> The gradient of each operations can be computed individually
based on the input and output

> With the chain rule, gradient of the loss function with respect to
any parameter is a sequence of multiplications of individual
gradients

~logp(Y'|)
- For example,

]

(@)Tz) 2L6) alogo(-)
o]

: do

Bo((w(”))To(W(l)x))
LW - x) T (w®)To(Wy)

wh . x @) o(Whx)

dw(©)

]

w <-
IW(

1

R I

18

Example: MiniTorch

A screenshot from the MintTorcH library3

class Add(Function):
@staticmethod
def forward(ctx, tl, t2):
return add_zip(tl, t2)

@staticmethod
def backward(ctx, grad output):
return grad_output, grad_output

ass Mul(Function):
@staticmethod
def forward(ctx, a, b):
ctx.save_for_backward(a, b)
return mul_zip(a, b)

estaticmethod
def backward(ctx, grad_output):

a, b = ctx.saved_values

return mul_zip(b, grad_output), mul_zip(a, grad_output)

class Sigmoid(Function):
@staticmethod
def forward(ctx, a):
out = sigmoid map(a)
ctx.save_for_backward(out)
return out

@staticmethod
def backward(ctx, grad_output):
sigma = ctx.saved values
return sigma * (-sigma + 1.0) * grad_output

3 A teaching library of PyTorch developed by Sasha Rush and Ge Gao
19

https://minitorch.github.io/

Computation ph

Perform the forward /backward step with a graph of basic operations
(e.g., PyTorch, Tensorflow)

p(Y | x) —logp(Y| x)
' a0

i

| A(w')Tz)

(0) ¢-- (oNT
w";wm (wl)z

' da

i

| AW - x)

W o wia |
IWk

k I

20

Computation Graph

Perform the forward /backward step with a graph of basic operations
(e.g., PyTorch, Tensorflow)

p(Y | x) —logp(Y| x)
' a0

i

| 3l)Tz)

W Sl (w |) z

' da

| AW - x)

wo e Wi
Wl

x

» Modular implementation: implement each module with its

forward /backward operations together
> Automatic differentiation: automatically run with the backward

step

20

Example: Micrograd

MICROGRAD is an extremely simple example to illustrate the idea of
using autograd to implementing the backpropagation algorithm.

8 micrograd

Demo

21

https://github.com/karpathy/micrograd
https://colab.research.google.com/drive/1pbvhVZ9Qnt5BlHwDfzRnBU9cbMFTx-5N?usp=sharing

Example: Gradient Computation

Function
f(a,b) =2ab + b*

The computation graph on forward and backward operations

data -8.0000 | grad 2.0000

data 2.0000 | grad -8.0000

data -4.0000 | grad 4.0000
data 2.0000 | grad -4.0000

data -16.0000 | grad 1.0000

data 4.0000 | grad 1.0000

22

RNN Language Modeling

Language Models

A language model defines the probability of x; given
x = (x1,x2,...,X-1) as

P(xt | x1,...,x-1) (15)
and the joint probability as

P(x1t) = P(x1):P(x2]| x1)

P(xt | x1,%2, ..., XT-1)

24

Language Modeling with RNNs

Using RNNSs for language modeling

with two special tokens

{D/xll"‘/xT/.}

25

RNN Language Models

For a given sentence {x1, ..., x;}, the input at time f is word
embedding x;

The probability distribution of next word X;
exp(w] ,Ji-1)

Tver exp] 1)

P(Xy =x| x14-1) = (16)

where

> w, , is the output weight vector (parameter) associated with
word x
> % is the word vocabulary 26

Special Cases

Similar to statistical language modeling, there are also two special
cases that we need to consider

{I:l,xl,...,xT,I}

The corresponding prediction functions are defined as

> Attimet =1
P(X1 = x) < exp(w; Jio) (17)
> Attimet =T

P(Xr = | x1:7-1) < exp(w] hr-1) (18) =27

Challenge of Training RNNs

The training objective for each timestep is to predict the next token in
the text

.
> Prediction at step t, P(X; = x | x1.4-1) = 5 exp(wo,cli-1)

wer exp(w] hi-1)

> Lossatstept, Ly = —log P(X; = x | x1:4-1)

29

Let 0 denote all model parameters

N - IL,
20 = Z 20 (19)

Backpropagation Through Time [Rumelhart et al., 1985, BPTT]

30

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

» OQutput parameter matrix W, = (w, 1, ..., Wo,v)

31

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

> Qutput parameter matrix W, = (wy 1, ..., W, v)

> Input word embedding matrix X = (x1,...,xv)

31

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

> Qutput parameter matrix W, = (wy 1, ..., W, v)
> Input word embedding matrix X = (x1,...,xv)

> Neural network parameters Wy, W;, b

31

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

» Output model parameter %

32

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

> Output model parameter 5-~— aLt

> Neural network parameters, for example W,

9Lt oL flahm oh;
Z{aht D oh;) aw, (=0)

Similar patterns for the other two neural network parameters W;
and b

32

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

> Output model parameter 5-~— aLt

> Neural network parameters, for example W,

9Lt oL, 1 M1, Ik
Z {on D oh;) aw, (=0)
Similar patterns for the other two neural network parameters W;

and b
> Word embedding 5=+ aLt
> E.g., word embedchng xy is the input of hy if t’ < ¢, s0 ...

32

Challenges

For each timestep, we need to compute the gradient using the chain
rule:

t -1
dh
8Lt _ Z {aLt]+l (21)

oW, &\ oh, | a,- awh

The chain rule of gradient will cause two potential problems in
training RNNs

> vanishing gradients: a—‘ —0
> exploding gradients: 3 aL’ >M

[Pascanu et al., 2013]

33

Exploding Gradients

Solution: norm clipping [Pascanu et al., 2013].

Consider the gradient g = g—(‘;,

— T+ —— 22
8T el (22)

when || g]| > 7.

» Usually, T = 3 or 5 in practice.

> Smaller gradient will cause slower learning progress

34

Vanishing Gradients

Solution:

> initialize parameters carefully

> replace hidden state transition function o(-) with other options

fx, hi—1) = c(Wyhi_1 + Wix; + b) (23)

» LSTM [Hochreiter and Schmidhuber, 1997]
> GRU [Cho et al., 2014]

35

Long Short-Term Memory

From the first page of the original paper proposing LSTM
[Hochreiter and Schmidhuber, 1997]

The problem. With conventional “Back-Propagation Through Time” (BPTT, e.g., Williams
and Zipser 1992, Werbos 1988) or “Real-Time Recurrent Learning” (RTRL, e.g., Robinson and
Fallside 1987), error signals “flowing backwards in time” tend to either (1) blow up or (2) vanish:
the temporal evolution of the backpropagated error exponentially depends on the size of the
weights (Hochreiter 1991). Case (1) may lead to oscillating weights, while in case (2) learning to
bridge long time lags takes a prohibitive amount of time, or does not work at all (see section 3).

The remedy. This paper presents “Long Short-Term Memory” (LSTM), a novel recurrent
network architecture in conjunction with an appropriate gradient-based learning algorithm. LSTM
is designed to overcome these error back-flow problems. It can learn to bridge time intervals in
excess of 1000 steps even in case of noisy, incompressible input sequences, without loss of short
time lag capabilities. This is achieved by an efficient, gradient-based algorithm for an architecture

36

fi
Ct
(3
h

Rather than directly taking input and hidden state as simple
transition function, LSTM relies on three cates to control how much
information it should take from input and hidden state before
combining them together

= 0(Wxixt + Wpihi—1 + Weice1 + bj)
= G(fox[+ W],fht_l + WCfC[_1 + bf) \
= froci +ipotanh(Wyexy + Wychig + b)) t—>
= 0(Wxoxt + Wiohi—1 + Weoer +by)

= 0 otanh(ct)

where o is the element-wise multiplication, {W.} and {b.} are
parameters. [Graves, 2013]

37

Reference

e P 1 T S 1A i B i

Bengio, Y., Ducharme, R., and Vincent, P. (2001).

A neural probabilistic language model.

In NIPS.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y. (2014).

On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259.

Graves, A. (2013).
Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.
Neural computation, 9(8):1735-1780.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.
In International Conference on Machine Learning, pages 1310-1318.

Rumelhart, D. E., Hinton, G. E., and Williams, R.J. (1985).

Learning internal representations by error propagation.

Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.
Shalev-Shwartz, S. and Ben-David, S. (2014).

Understanding machine learning: From theory to algorithms.
Cambridge university press.

38

	Overview
	Neural Network Language Models
	Recurrent Neural Networks
	Computation Graph
	RNN Language Modeling
	Challenge of Training RNNs

