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The Skip-gram Model



The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word 𝑤𝑡 to predict its
surrounding words 𝑤𝑡+𝑖

In probabilistic form, we need

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡) =? (1)

[Mikolov et al., 2013]
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Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )
(2)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2
▶ Usually, larger window size 𝑐 gives better quality of word

representations, but it also causes large computational
complexity.

▶ Unlike LSA, the skip-gram model always considers local context.
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Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )
(3)

The definition in equation 3 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word?

Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡 )
(4)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding.
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Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (5)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )

= 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡 )

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.
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Negative Sampling

Review what have discussed so far

▶ The ultimate goal is learning word representations instead of a
classifier

▶ The normalization of prediction probability is computationally
expensive

To reduce the computational complexity, we can replace

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡 )

with the following function as objective

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (6)

where 𝑘 is the number of negative samples and 𝜎(·) is the Sigmoid
function (the one used for binary classification in lecture 02)
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Basic Training Procedure

Example with 𝑡 = 6, 𝑖 = 1, and 𝑘 = 3

. . . finding a better word representation . . .

𝑤6 𝑤7 negative samples

better word larger
cause

window

For a given word 𝑤𝑡 and 𝑖

1. Treat its neighboring context word 𝑤𝑡+𝑖 as positive example
2. Randomly sample 𝑘 other words from the vocab as negative

examples
3. Optimize Equation 6 to update both 𝒗· and 𝒖·
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Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (7)

▶ The size of negative samples 𝑘

▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4
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Examples

▶ Context window size: 3
▶ Word embedding dimension: 50
▶ Epochs of training: 3

natural embeddings

processing contextualized

nlp embedding

nl representations

language vectors

understanding elmo

nlu static

nlg word

fundamental polyglot

Online Demo
10
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GloVe: Global Vectors for Word
Representation



Glove

The motivation of GloVe [Pennington et al., 2014] is to find a balance
between the methods based on

▶ global matrix factorization (e.g., LSA) and
▶ local context windows (e.g., Skip-gram).

12



Word-to-word Co-occurrence Matrix

▶ Define X with 𝑋𝑖 , 𝑗 denotes the frequency of word 𝑗 appears in the
context of word 𝑖

X =


. . . . . . . . . . . . . . . . . . . . .

𝑋𝑖 ,1 . . . 𝑋𝑖 , 𝑗−1 𝑋𝑖 , 𝑗 𝑋𝑖 , 𝑗+1 . . . 𝑋𝑖 ,𝑉

. . . . . . . . . . . . . . . . . . . . .

 (8)

Each row corresponds one target word, each column
corresponds one context word.

▶ Empirical probability estimation of 𝑤 𝑗 given 𝑤𝑖

𝑄(𝑤 𝑗 | 𝑤𝑖) =
𝑋𝑖 𝑗

𝑋𝑖
(9)

where 𝑋𝑖 =
∑

𝑗 𝑋𝑖 , 𝑗
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Probability Estimation via Word Embeddings

Another way to estimate the probability of 𝑤 𝑗 given 𝑤𝑖 is

𝑃(𝑤 𝑗 | 𝑤𝑖) =
exp(𝒖T

𝑤 𝑗
𝒗𝑤𝑖 )∑

𝑤′∈Vexp(𝒖T
𝑤′𝒗𝑤𝑖 )

(10)

with 𝒖· and 𝒗· are two sets of parameters (embeddings) associated
with words, similar to the Skip-gram model.
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GloVe

The basic idea is to learn {𝒗·} and {𝒖·}, such that

𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ 𝑃(𝑤 𝑗 | 𝑤𝑖) (11)

or
log𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ log𝑃(𝑤 𝑗 | 𝑤𝑖) (12)

More specific

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 ) (13)
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GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 ) (14)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 )

}2
(15)

If we only consider the unnormalized version of 𝑃 and 𝑄, it can be
further simplified as (Eq. 16 in [Pennington et al., 2014]){

log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖

}2
(16)
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Objective Function

The overall objective function is defined as∑
𝑤𝑖

∑
𝑤 𝑗

(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 )2 (17)

The objective function is further refined by discouraging
high-frequency words as∑

𝑤𝑖

∑
𝑤 𝑗

𝑓 (𝑋𝑖 𝑗)(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 )2 (18)
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Down-weighting

Weighting function:

𝑓 (𝑥) =
{
( 𝑥
𝑥max

)𝑎 if 𝑥 < 𝑥max

1 otherwise
(19)

where 𝑎 = 3/4.
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Further Discussion



Gender Bias

𝒗man − 𝒗woman ≈ 𝒗computer programmer − 𝒗homemaker (20)
𝒗father − 𝒗mother ≈ 𝒗doctor − 𝒗nurse (21)

[Bolukbasi et al., 2016]
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Example

[Bolukbasi et al., 2016]
21



Problem

Word embeddings like this not only reflect such stereotypes but also
amplify them

22



A Solution

Three steps [Bolukbasi et al., 2016]

1. find gender neutral words with biases in the original
embeddings;

2. identify the gender-specific space 𝑉 and its orthogonal
complement 𝑉⊥

3. project embeddings of the gender neutral words to the subspace
𝑉⊥
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Question

Can we have an interpretability of each dimension?

Solution: post-processing on word embeddings

▶ reconstructing with sparsity constraint [Faruqui et al., 2015]
▶ rotating word embedding space using factor

analysis [Park et al., 2017]
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Reconstruction with Sparsity

Interpretability is derived from the sparsity constraint as

argmin
D,A

𝑉∑
𝑖=1

∥𝒙𝑖 − D𝒂𝑖∥2
2 + 𝜆∥𝒂𝑖∥1 + 𝜏∥D∥2

2 (22)

where 𝒙𝑖 and 𝒂𝑖 are the original and sparse embeddings of word 𝑖, D
is the transformation matrix.
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Example

Figure: Top-ranked words per-dimension before and after reconstruction.
Each line shows words from a different dimension.
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Problem

▶ Word embeddings from either Word2vec or GloVe encode not
just semantic information

▶ In some applications, we want to emphasize one particular
aspect of linguistic information
▶ Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
▶ Discourse information [Ji and Eisenstein, 2014]

▶ Solutions
▶ fine-tuning word embeddings with certain constraints

[Faruqui et al., 2014, Mrksic et al., 2016]
▶ learning from supervision information [Ji and Eisenstein, 2014]
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Retrofitting

Retrofitting with WordNet [Miller, 1995]

▶ Ω = (𝑉, 𝐸) be a semantic graph over words, where 𝑉 is the node
set with each element as a word, and 𝐸 is the edge set with each
edge representing a semantic relation between two words.
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Retrofitting (II)

▶ The goal is to learn word embeddings {𝒒} such that 𝒒𝑖 and 𝒒 𝑗 are
close enough if (𝑖 , 𝑗) ∈ 𝐸.

▶ In addition, {𝒒} should also satisfy the constraint from original
word embeddings, such that 𝒒𝑖 and 𝒒𝑖 are close enough for every
word in V.

Ψ(Q̃) =
|V|∑
𝑖=1

[
𝛼𝑖∥𝒒𝑖 − 𝒒̂𝑖∥2 +

∑
(𝑖 , 𝑗)∈𝐸

𝛽𝑖 𝑗∥𝒒𝑖 − 𝒒 𝑗∥2
]

(23)

29



Retrofitting (II)

▶ The goal is to learn word embeddings {𝒒} such that 𝒒𝑖 and 𝒒 𝑗 are
close enough if (𝑖 , 𝑗) ∈ 𝐸.

▶ In addition, {𝒒} should also satisfy the constraint from original
word embeddings, such that 𝒒𝑖 and 𝒒𝑖 are close enough for every
word in V.

Ψ(Q̃) =
|V|∑
𝑖=1

[
𝛼𝑖∥𝒒𝑖 − 𝒒̂𝑖∥2 +

∑
(𝑖 , 𝑗)∈𝐸

𝛽𝑖 𝑗∥𝒒𝑖 − 𝒒 𝑗∥2
]

(23)

29



Retrofitting (II)

▶ The goal is to learn word embeddings {𝒒} such that 𝒒𝑖 and 𝒒 𝑗 are
close enough if (𝑖 , 𝑗) ∈ 𝐸.

▶ In addition, {𝒒} should also satisfy the constraint from original
word embeddings, such that 𝒒𝑖 and 𝒒𝑖 are close enough for every
word in V.

Ψ(Q̃) =
|V|∑
𝑖=1

[
𝛼𝑖∥𝒒𝑖 − 𝒒̂𝑖∥2 +

∑
(𝑖 , 𝑗)∈𝐸

𝛽𝑖 𝑗∥𝒒𝑖 − 𝒒 𝑗∥2
]

(23)

29



Counter-fitting

Inject antonymy and synonymy constraints into word embedding
space to improve the embeddings’ capability for judging semantic
similarity

[Mrksic et al., 2016] 30



Learning from Supervision Signal

Word embeddings learned from unsupervised methods may not be
optimal for a particular task, and may not capture the desired
linguistic information.

Figure: (Left) Word embeddings learned with supervision signal; (Right)
Unsupervised word embeddings.
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