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The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word w; to predict its
surrounding words w;;

Input projection  output

R

w(t-1)

w(t+1)

N we2)

[Mikolov et al., 2013]



The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word w; to predict its
surrounding words w;;

Input projection  output
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In probabilistic form, we need
P(wi+i | wy) =? (1)

[Mikolov et al., 2013]



Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words
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wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.
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» Usually, larger window size ¢ gives better quality of word
representations, but it also causes large computational
complexity.



Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

exp(ug,, Vw,)

Y eXplity V)

P(wiyi | wi; 0) = (2)

wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.

> t=6,c=2

» Usually, larger window size ¢ gives better quality of word
representations, but it also causes large computational
complexity.

> Unlike LSA, the skip-gram model always considers local context.



Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):
exp(uty,, Vw,)
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The definition in equation 3 requires two sets of parameters for the

p(wisi | wi; 0) = (3)
same vocabulary

> v, word vector (as input)
> uy,: context vector (as output)
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Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

exp(utg,, Vw,)

Zw’€°7/ eXP(”;/th)

The definition in equation 3 requires two sets of parameters for the

p(wiyi | wi; 0) = (3)

same vocabulary

> v, word vector (as input)

> uy,: context vector (as output)
Quiz
Why we need two vectors for a word? Assume we only use one set
of the parameter {v}

exp(vy,, Vw,)

Zwew eXp(U;EJ,’Uwf)

p(wiyi | we; 0) = 4)

A trivial solution that maximize the (log-)probability is v,,;, = vw,
which means all words will have the exactly same embedding. 5
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Objective Function

The objective function of a skip-gram model is defined as

TZ D, logp(wisi| w) (5)

=1 —c<i<c;i#0
Each log probability is defined as

exp(itg,, Vw,)

Zw el eXP(” /th)

uy, vy, —log Z exp(u, ;)
w'eV

log

log p(wysi | wy)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.
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Negative Sampling

Review what have discussed so far

» The ultimate goal is learning word representations instead of a
classifier

» The normalization of prediction probability is computationally
expensive

To reduce the computational complexity, we can replace
log p(wisi | we) = u;lr,mth —log Z exp(u;,/th)
w'eV

with the following function as objective

k
log G(MbTUHith) - Z log O(u;zsz,ﬂw, (6)

i=1

~Pn ('LU)

where k is the number of negative samples and o(-) is the Sigmoid
function (the one used for binary classification in lecture 02)
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Basic Training Procedure

Example witht =6,i=1,and k =3

... finding a better word representation ...

We w7y  negative samples
better word larger
cause
window

For a given word w; and i

1. Treat its neighboring context word w;,; as positive example

2. Randomly sample k other words from the vocab as negative
examples

3. Optimize Equation 6 to update both v. and u.
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There are two factors that can affect the model
performance [Mikolov et al., 2013]
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Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013]

k
log (., vw,) = ) 10§ 0lty 0wy, ) 7
i=1

> The size of negative samples k

> 5 < k < 20 works better for small datasets
> 2 < k < 5is enough for large datasets

> Noisy distribution p,(w)

> pu(w) o unigram—distribution(w)%



> Context window size: 3
» Word embedding dimension: 50

> Epochs of training: 3

natural embeddings
processing contextualized
nlp embedding
nl representations
language vectors
understanding elmo
nlu static
nlg word
fundamental polyglot

Online Demo
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http://epsilon-it.utu.fi/wv_demo/

GloVe: Global Vectors for Word
Representation




Glove

The motivation of GloVe [Pennington et al., 2014] is to find a balance
between the methods based on

» global matrix factorization (e.g., LSA) and

> local context windows (e.g., Skip-gram).
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Word-to-word Co-occurrence Matrix

> Define X with X; ; denotes the frequency of word j appears in the
context of word i

X= Xz’,l X,',]'_1 Xi,]' Xi,j+1 Xi,V (8)

Each row corresponds one target word, each column
corresponds one context word.
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Word-to-word Co-occurrence Matrix

> Define X with X; ; denotes the frequency of word j appears in the
context of word i

X = Xz’,l - Xz',j—l Xi,]' Xi,]q_l . Xi,V (8)
Each row corresponds one target word, each column

corresponds one context word.

> Empirical probability estimation of w; given w;

Xij
Qwj | w;) = yj )

where X; = Z]» Xi,j

13



Probability Estimation via Word Embeddings

Another way to estimate the probability of w; given w; is

exp(u], v,

P(w; | wi) =
( ]l l) Zw'e?/ eXP(”Z;fvwi)

(10)

with #. and v. are two sets of parameters (embeddings) associated
with words, similar to the Skip-gram model.

14



The basic idea is to learn {v.} and {u.}, such that
Qwj | wi) » P(wj | w;) (11)

or
log Q(w; | w;) ~ log P(w; | w;) (12)
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The basic idea is to learn {v.} and {u.}, such that
Qwj | wi) » P(wj | w;) (11)

or
log Q(w; | w;) ~ log P(w; | w;) (12)

More specific

log(Xj) — log(X;) = u;jvwi —log Z exp(u;,vwi) (13)

w' eV

15



GloVe (Il)

Starting point:

log(Xj) — log(X;) = ubT,,].vwi —log Z exp(u;—;/vuﬁ) (14)

w' eV
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Starting point:

log(Xj) — log(X;) = u;jvwi —log Z exp(u), vy, (14)

w' eV

In order to find the best approximation, we could formulate this as a
optimization problem

2
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GloVe (Il)

Starting point:

log(Xj) — log(X;) = u;jvwi —log Z exp(u), vy, (14)

w' eV

In order to find the best approximation, we could formulate this as a
optimization problem

2
{log(Xi,') —log(X;) — u;/.vw,. +log Z exp(uL,vw,.)} (15)

w' eV

If we only consider the unnormalized version of P and Q, it can be
further simplified as (Eq. 16 in [Pennington et al., 2014])

{ log(Xyj) — ul, v, }2 (16)
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Objective Function

The overall objective function is defined as

D0 og(Xi) -l va,)? (17)

Wi w;j
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Objective Function

The overall objective function is defined as

D0 og(Xi) -l va,)? (17)

Wi w;j

The objective function is further refined by discouraging
high-frequency words as

Z Z f(Xij)(log(Xij) — u;jvw,-)Z (18)

wi ZU]

17



Down-weighting

Weighting function:
_ (xx )u ifx<-xmax
flx)= { 1 otherwise (19)

where a = 3/4.

10 t

08 | .

06 | .

f(Xi5) :

04 !

02 E

" | ;;max | ‘ I Xij
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Further Discussion




Gender Bias

Oman — Owoman ~  Ocomputer programmer — Uhomemaker (20)
Ofather — Umother ~  Odoctor — Unurse (21)
[Bolukbasi et al., 2016]
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Word embeddings like this not only reflect such stereotypes but also
amplify them

22



Three steps [Bolukbasi et al., 2016]

1. find gender neutral words with biases in the original
embeddings;

2. identify the gender-specific space V and its orthogonal
complement V+

3. project embeddings of the gender neutral words to the subspace
VJ_
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Question

Can we have an interpretability of each dimension?

Solution: post-processing on word embeddings

> reconstructing with sparsity constraint [Faruqui et al., 2015]

> rotating word embedding space using factor
analysis [Park et al., 2017]



Reconstruction with Sparsity

Interpretability is derived from the sparsity constraint as

\4
argmin )" [|x; = Daj|3 + Allaill1 + 7l| DII3 (22)
DA i

where x; and a; are the original and sparse embeddings of word i, D
is the transformation matrix.
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combat, guard, honor, bow, trim, naval

11, could, faced, lacking, seriously, scored
X | see, n’'t, recommended, depending, part

due, positive, equal, focus, respect, better
sergeant, comments, critics, she, videos
fracture, breathing, wound, tissue, relief
relationships, connections, identity, relations
A | files, bills, titles, collections, poems, songs
naval, industrial, technological, marine
stadium, belt, championship, toll, ride, coach

Figure: Top-ranked words per-dimension before and after reconstruction.
Each line shows words from a different dimension.
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> Word embeddings from either Word2vec or GloVe encode not
just semantic information
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aspect of linguistic information
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> Word embeddings from either Word2vec or GloVe encode not
just semantic information

> In some applications, we want to emphasize one particular
aspect of linguistic information

> Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
> Discourse information [Ji and Eisenstein, 2014]

» Solutions

> fine-tuning word embeddings with certain constraints
[Faruqui et al., 2014, Mrksic et al., 2016]
> learning from supervision information [Ji and Eisenstein, 2014]
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Retrofitting

Retrofitting with WordNet [Miller, 1995]

» O = (V, E) be a semantic graph over words, where V is the node
set with each element as a word, and E is the edge set with each
edge representing a semantic relation between two words.
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Retrofitting (Il)

> The goal is to learn word embeddings {g} such that g; and q; are
close enough if (i, j) € E.
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Retrofitting (Il)

> The goal is to learn word embeddings {g} such that g; and q; are
close enough if (i, j) € E.

> In addition, {g} should also satisfy the constraint from original
word embeddings, such that g; and g; are close enough for every
word in 7.
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Retrofitting (Il)

> The goal is to learn word embeddings {g} such that g; and q; are
close enough if (i, j) € E.
> In addition, {g} should also satisfy the constraint from original
word embeddings, such that g; and g; are close enough for every
word in 7.
4
W@ =) [aillgi-ad?+ Y pillai— a2 (23)
i=1

(i,j)eE 2



Counter-fitting

Inject antonymy and synonymy constraints into word embedding
space to improve the embeddings’ capability for judging semantic

similarity

east

expensive British
west pricey American
north cheaper Australian
Before south costly Britain
southeast overpriced European
northeast  inexpensive England
eastward costly Brits
eastern pricy London
After easterly overpriced BBC
- pricey UK
- afford Britain

Table 1: Nearest neighbours for target words using GloVe
vectors before and after counter-fitting

[Mrksic et al., 2016]
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Learning from Supervision Signal

Word embeddings learned from unsupervised methods may not be
optimal for a particular task, and may not capture the desired

linguistic information.
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Figure: (Left) Word embeddings learned with supervision signal; (Right)

Unsupervised word embeddings.
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