
CS 6770 Natural Language
Processing
Word Embeddings (I):
Distributed Hypothesis, Latent Semantic Analysis

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. Distributional Hypothesis

2. Latent Semantic Analysis

3. Singular Value Decomposition

4. An Example

5. Evaluation Methods

6. Further Extension

1

Distributional Hypothesis

Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a great time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]

3

Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a great time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]

3

Another Example

Consider the following examples, although we do not know what
exactly words are missing, to some extent we can still guess the
meanings of those missing words

▶ is delicious sauteed with garlic.

▶ is superb over rice.

▶ . . . leaves with salty sauces . . .

[Jurafsky and Martin, 2019]

4

Latent Semantic Analysis

Bag-of-words Representation

Consider the two example sentences

▶ I love coffee and their cappuccino is great.

▶ I prefer black coffee.

▶ Which one do you prefer, cappuccino or black coffee?

▶ I think latte is better.

A bag-of-words representation is a way to represent natural language
texts with numeric vectors, which consists of three steps

1. Tokenize texts
2. Build a vocabulary
3. Represent texts as numeric vectors

6

Word-document Matrix

In general, for a corpus of 𝑑 documents over a vocabulary V, the
cooccurence matrix is defined as C,

𝑪 = [𝑐𝑖 𝑗] ∈ ℝ𝑣×𝑑

=


𝑐1,1 . . . 𝑐1,𝑑
...

. . .
...

𝑐𝑣,1 . . . 𝑐𝑣,𝑑

 (1)

where

▶ 𝑣 = |V| is the size of vocab
▶ 𝑑 is the number of the documents
▶ 𝑐𝑖 𝑗 is the count of word 𝑖 in document 𝑗

7

Word-document Matrix (Cont.)

Consider the following toy example, where we have four documents
and a vocabulary with eight words

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)

8

Word-document Matrix (Cont.)

Consider the following toy example, where we have four documents
and a vocabulary with eight words

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)

8

Word-document Matrix (Cont.)

Consider the following toy example, where we have four documents
and a vocabulary with eight words

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)

8

Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩

9

Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩

9

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
coffee𝒘cappuccino

▶ 𝒘T
coffee𝒘latte

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

10

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
coffee𝒘cappuccino

▶ 𝒘T
coffee𝒘latte

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

10

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
coffee𝒘cappuccino

▶ 𝒘T
coffee𝒘latte

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

10

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
coffee𝒘cappuccino

▶ 𝒘T
coffee𝒘latte

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

10

Two Constraints

Map 𝑪 to a lower-dimensional matrix 𝑾 ∈ ℝ𝑣×𝑘 while preserving as
much information as possible

New numeric representations of words

(a) should have low-dimensional dense vectors
(b) should contain similar information as the original sparse vectors

11

Two Constraints

Map 𝑪 to a lower-dimensional matrix 𝑾 ∈ ℝ𝑣×𝑘 while preserving as
much information as possible

New numeric representations of words

(a) should have low-dimensional dense vectors
(b) should contain similar information as the original sparse vectors

11

Singular Value Decomposition

Singular Value Decomposition (SVD)

Using SVD, the word-document matrix 𝑪 can be decomposed into a
multiplication of three matrices

𝑪 = 𝑼0 · 𝚺0 · 𝑽 T
0 . (3)

▶ 𝑼0 ∈ ℝ𝑣×𝑣 is an orthonormal matrix
▶ 𝑽0 ∈ ℝ𝑑×𝑑 is an orthonormal matrix
▶ 𝚺0 ∈ ℝ𝑣×𝑑 is a diagonal matrix — each component on the

diagonal is called a singular value

13

SVD: Example

Given a matrix 𝑪 as

𝑪 =

[
1.0 2.0
3.0 4.0

]
(4)

The decomposition is

𝑼 =

[
−0.40 −0.91
−0.91 0.40

]
𝚺 =

[
5.46 0

0 0.37

]
𝑽 T =

[
−0.58 −0.82
0.82 −0.58

]
(5)

To obtain a low-dimensional approximation of 𝑪, we can remove one
of the singular values. But what matters is which one we are going to
remove?

14

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

15

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

15

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]

▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

15

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]

Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

15

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

15

SVD: Example (Cont.)

Given a matrix 𝑪 as

𝑪 =


1.0 2.0
3.0 4.0
5.0 6.0

 (6)

The decomposition is

𝑼 =


0.23 −0.88 0.41
0.52 −0.24 −0.82
0.82 0.40 0.41

 (7)

𝚺 =


9.53 0

0 0.51
0 0

 (8)

𝑽T =

[
0.62 0.78
0.78 −0.62

]
(9)

The maximum number of non-zero singular values is min(𝑣, 𝑑),
where 𝑣 and 𝑑 are the numbers of rows and columns respectively.

16

SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸ ︷︷ ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸ ︷︷ ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸ ︷︷ ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.

17

SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸ ︷︷ ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸ ︷︷ ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸ ︷︷ ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.

17

Singular Values

A real example: 𝑪 with about 9K words and 71.8K sentences is
constructed from a dataset used in the demo code. The following plot
shows the first/top 500 singular values in the decreasing order.

With the index → 9𝐾, the singular values are close to 0.
18

SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸ ︷︷ ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸ ︷︷ ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸ ︷︷ ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.

19

SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸ ︷︷ ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸ ︷︷ ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸ ︷︷ ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.

19

Lower-dimensional Word Representations

Given
𝑪 ≈ 𝑼 · 𝚺 · 𝑽 T (12)

to construct low-dimensional word representation, we can multiply 𝑽
on both side of equation 12 and then have

𝑾 = 𝑼 · 𝚺 ≈ 𝑪 · 𝑽 ∈ R𝑣×𝑘 (13)

What if we multiply 𝑼 on both side of equation 12?

20

Lower-dimensional Word Representations

Given
𝑪 ≈ 𝑼 · 𝚺 · 𝑽 T (12)

to construct low-dimensional word representation, we can multiply 𝑽
on both side of equation 12 and then have

𝑾 = 𝑼 · 𝚺 ≈ 𝑪 · 𝑽 ∈ R𝑣×𝑘 (13)

What if we multiply 𝑼 on both side of equation 12?

20

LSA Algorithm

▶ Construct the word-document matrix 𝑪 ∈ ℝ𝑣×𝑑 from the corpus
▶ Perform SVD on 𝑪 and get 𝑼0, 𝚺0 and 𝑽0

▶ Pick a 𝑘 and construct 𝑼 , 𝚺 and 𝑽

▶ Construct low-dimensional word representations 𝑾 = 𝑼 · 𝚺

21

An Example

Dataset

We collected the dataset from the abstracts of NLP papers from the
arXiv website. Some example sentences from the dataset

▶ The author uses the entropy of the ideal Bose-Einstein

gas to minimize losses in computer-oriented languages.

▶ In this paper, current dependency based treebanks are

introduced and analyzed.

▶ The model of semantic concept lattice for data mining of

microblogs has been proposed in this work.

This dataset includes about 1.6M tokens.

23

Results

▶ The size of the matrix 𝑪: 8909 words, 71K sentences
▶ Word embedding dimension: 50
▶ Word similarity is calculated by the cosine value between two

word vectors

natural embeddings

processing word

language contextualized

understanding glove

nlu sense

fundamental embedding

nlg vectors

vision disambiguation

sign analogy

24

Evaluation Methods

Overview

▶ Intrinsic Evaluation1

▶ Word similarity
▶ Word analogy
▶ Word intrusion

▶ Extrinsic Evaluation
▶ Evaluating based on a downstream task, such as text classification

1http://bionlp-www.utu.fi/wv_demo/
26

http://bionlp-www.utu.fi/wv_demo/

Word Similarity

Let 𝑤𝑖 and 𝑤 𝑗 be two words, and 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 be the corresponding
word embeddings, word similarity can be obtained by computing
their cosine similarity between 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 as

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥2 · ∥𝒗𝑤 𝑗∥2
(14)

27

Examples

Figure: Sample word pairs along with their human similarity judgment from
WS-353 [Faruqui et al., 2016].

28

Datasets

Available word similarity datasets

Figure: Word similarity datasets [Faruqui et al., 2016].

29

Word Similarity

the basis for other intrinsic evaluations

http://wordvec.colorado.edu/

30

http://wordvec.colorado.edu/

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

31

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

31

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

31

Word Analogy: Examples

Figure: Word analogy examples.

32

Word Similarity: Problems (I)

Similarity and relatedness: which pair is closer?

▶ train, car

▶ coffee, cup

In WS-353, the similarity between coffee and cup is higher than train

and car.

33

Word Similarity: Problems (I)

Similarity and relatedness: which pair is closer?

▶ train, car

▶ coffee, cup

In WS-353, the similarity between coffee and cup is higher than train

and car.

33

Word Similarity: Problems (II)

Frequency effects of cosine similarity

▶ prevents the bias introduced by the norm of a vector 3
▶ pairs of words that have similar frequency will be closer in the

embedding space
▶ higher similarity of two words can be given by cosine similarity

then they should be based on their word meaning

34

Word Similarity: Problems (III)

Inability to account for polysemy (one word has multiple meanings)

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥ · ∥𝒗𝑤 𝑗∥
(15)

▶ Encode them into different dimensions?

35

Extrinsic Evaluation

▶ Implicit assumption: there is a consistent, global ranking of word
embedding quality, and that higher quality embeddings will
necessarily improve results on any downstream task.

▶ Unfortunately, this assumption does not hold in
general [Schnabel et al., 2015].

▶ Examples
▶ empirical results show that it may not be able give much help to

syntactic parsing [Andreas and Klein, 2014]
▶ adding surface-form features always help ([Ji and Eisenstein, 2014]

and many other works)

36

Further Extension

Re-weighting: Motivation

Word frequency in the descreasing order

Top words: the, and, to, was, it

38

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (16)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(17)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (18)

▶ Factorize the weighted matrix using SVD

39

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (16)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(17)

where 𝑁 is the total number of documents

▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the
corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (18)

▶ Factorize the weighted matrix using SVD

39

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (16)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(17)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (18)

▶ Factorize the weighted matrix using SVD

39

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (16)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(17)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (18)

▶ Factorize the weighted matrix using SVD
39

Context Window Size

Distributional hypothesis
Words that occur in the similar contexts tend to have similar
meanings

Are 𝑤𝑖 and 𝑤 𝑗 similar to each other, when they appear in the same
documents but far away from each other?

40

Context Window Size (II)

41

Reference

Andreas, J. and Klein, D. (2014).
How much do word embeddings encode about syntax?
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages
822–827.

Faruqui, M., Tsvetkov, Y., Rastogi, P., and Dyer, C. (2016).
Problems with evaluation of word embeddings using word similarity tasks.
arXiv preprint arXiv:1605.02276.

Ji, Y. and Eisenstein, J. (2014).
One vector is not enough: Entity-augmented distributional semantics for discourse relations.
arXiv preprint arXiv:1411.6699.

Jurafsky, D. and Martin, J. (2019).
Speech and language processing.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013).
Linguistic regularities in continuous space word representations.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 746–751.

Schnabel, T., Labutov, I., Mimno, D., and Joachims, T. (2015).
Evaluation methods for unsupervised word embeddings.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 298–307.

42

	Overview
	Distributional Hypothesis
	Latent Semantic Analysis
	Singular Value Decomposition
	An Example
	Evaluation Methods
	Intrinsic Evaluation
	Extrinsic Evaluation

	Further Extension

