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Distributional Hypothesis



Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a great time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]
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Another Example

Consider the following examples, although we do not know what
exactly words are missing, to some extent we can still guess the
meanings of those missing words

▶ is delicious sauteed with garlic.

▶ is superb over rice.

▶ . . . leaves with salty sauces . . .

[Jurafsky and Martin, 2019]
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Latent Semantic Analysis



Bag-of-words Representation

Consider the two example sentences

▶ I love coffee and their cappuccino is great.

▶ I prefer black coffee.

▶ Which one do you prefer, cappuccino or black coffee?

▶ I think latte is better.

A bag-of-words representation is a way to represent natural language
texts with numeric vectors, which consists of three steps

1. Tokenize texts
2. Build a vocabulary
3. Represent texts as numeric vectors
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Word-document Matrix

In general, for a corpus of 𝑑 documents over a vocabulary V, the
cooccurence matrix is defined as C,

𝑪 = [𝑐𝑖 𝑗] ∈ ℝ𝑣×𝑑

=


𝑐1,1 . . . 𝑐1,𝑑
...

. . .
...

𝑐𝑣,1 . . . 𝑐𝑣,𝑑

 (1)

where

▶ 𝑣 = |V| is the size of vocab
▶ 𝑑 is the number of the documents
▶ 𝑐𝑖 𝑗 is the count of word 𝑖 in document 𝑗
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Word-document Matrix (Cont.)

Consider the following toy example, where we have four documents
and a vocabulary with eight words

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)
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Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩
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The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
coffee𝒘cappuccino

▶ 𝒘T
coffee𝒘latte

𝑥1 𝑥2 𝑥3 𝑥4

i 1 1 0 1
love 1 0 0 0

prefer 0 1 0 0
think 0 0 0 1
coffee 1 1 1 0

cappuccino 1 0 1 0
latte 0 0 0 1

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors
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Two Constraints

Map 𝑪 to a lower-dimensional matrix 𝑾 ∈ ℝ𝑣×𝑘 while preserving as
much information as possible

New numeric representations of words

(a) should have low-dimensional dense vectors
(b) should contain similar information as the original sparse vectors
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Singular Value Decomposition



Singular Value Decomposition (SVD)

Using SVD, the word-document matrix 𝑪 can be decomposed into a
multiplication of three matrices

𝑪 = 𝑼0 · 𝚺0 · 𝑽 T
0 . (3)

▶ 𝑼0 ∈ ℝ𝑣×𝑣 is an orthonormal matrix
▶ 𝑽0 ∈ ℝ𝑑×𝑑 is an orthonormal matrix
▶ 𝚺0 ∈ ℝ𝑣×𝑑 is a diagonal matrix — each component on the

diagonal is called a singular value
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SVD: Example

Given a matrix 𝑪 as

𝑪 =

[
1.0 2.0
3.0 4.0

]
(4)

The decomposition is

𝑼 =

[
−0.40 −0.91
−0.91 0.40

]
𝚺 =

[
5.46 0

0 0.37

]
𝑽 T =

[
−0.58 −0.82
0.82 −0.58

]
(5)

To obtain a low-dimensional approximation of 𝑪, we can remove one
of the singular values. But what matters is which one we are going to
remove?
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SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.
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SVD: Example (Cont.)

Given a matrix 𝑪 as

𝑪 =


1.0 2.0
3.0 4.0
5.0 6.0

 (6)

The decomposition is

𝑼 =


0.23 −0.88 0.41
0.52 −0.24 −0.82
0.82 0.40 0.41

 (7)

𝚺 =


9.53 0

0 0.51
0 0

 (8)

𝑽T =

[
0.62 0.78
0.78 −0.62

]
(9)

The maximum number of non-zero singular values is min(𝑣, 𝑑),
where 𝑣 and 𝑑 are the numbers of rows and columns respectively.
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SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸               ︷︷               ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸               ︷︷               ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸               ︷︷               ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.
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Singular Values

A real example: 𝑪 with about 9K words and 71.8K sentences is
constructed from a dataset used in the demo code. The following plot
shows the first/top 500 singular values in the decreasing order.

With the index → 9𝐾, the singular values are close to 0.
18



SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸               ︷︷               ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸               ︷︷               ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸               ︷︷               ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.
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Lower-dimensional Word Representations

Given
𝑪 ≈ 𝑼 · 𝚺 · 𝑽 T (12)

to construct low-dimensional word representation, we can multiply 𝑽
on both side of equation 12 and then have

𝑾 = 𝑼 · 𝚺 ≈ 𝑪 · 𝑽 ∈ R𝑣×𝑘 (13)

What if we multiply 𝑼 on both side of equation 12?
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LSA Algorithm

▶ Construct the word-document matrix 𝑪 ∈ ℝ𝑣×𝑑 from the corpus
▶ Perform SVD on 𝑪 and get 𝑼0, 𝚺0 and 𝑽0

▶ Pick a 𝑘 and construct 𝑼 , 𝚺 and 𝑽

▶ Construct low-dimensional word representations 𝑾 = 𝑼 · 𝚺

21



An Example



Dataset

We collected the dataset from the abstracts of NLP papers from the
arXiv website. Some example sentences from the dataset

▶ The author uses the entropy of the ideal Bose-Einstein

gas to minimize losses in computer-oriented languages.

▶ In this paper, current dependency based treebanks are

introduced and analyzed.

▶ The model of semantic concept lattice for data mining of

microblogs has been proposed in this work.

This dataset includes about 1.6M tokens.
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Results

▶ The size of the matrix 𝑪: 8909 words, 71K sentences
▶ Word embedding dimension: 50
▶ Word similarity is calculated by the cosine value between two

word vectors

natural embeddings

processing word

language contextualized

understanding glove

nlu sense

fundamental embedding

nlg vectors

vision disambiguation

sign analogy
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Evaluation Methods



Overview

▶ Intrinsic Evaluation1

▶ Word similarity
▶ Word analogy
▶ Word intrusion

▶ Extrinsic Evaluation
▶ Evaluating based on a downstream task, such as text classification

1http://bionlp-www.utu.fi/wv_demo/
26
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Word Similarity

Let 𝑤𝑖 and 𝑤 𝑗 be two words, and 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 be the corresponding
word embeddings, word similarity can be obtained by computing
their cosine similarity between 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 as

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥2 · ∥𝒗𝑤 𝑗∥2
(14)
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Examples

Figure: Sample word pairs along with their human similarity judgment from
WS-353 [Faruqui et al., 2016].
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Datasets

Available word similarity datasets

Figure: Word similarity datasets [Faruqui et al., 2016].
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Word Similarity

the basis for other intrinsic evaluations

http://wordvec.colorado.edu/
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Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏 )T(𝒗𝑤𝑐 − 𝒗𝑤𝑑 )
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Word Analogy: Examples

Figure: Word analogy examples.
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Word Similarity: Problems (I)

Similarity and relatedness: which pair is closer?

▶ train, car

▶ coffee, cup

In WS-353, the similarity between coffee and cup is higher than train

and car.
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Word Similarity: Problems (II)

Frequency effects of cosine similarity

▶ prevents the bias introduced by the norm of a vector 3
▶ pairs of words that have similar frequency will be closer in the

embedding space
▶ higher similarity of two words can be given by cosine similarity

then they should be based on their word meaning
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Word Similarity: Problems (III)

Inability to account for polysemy (one word has multiple meanings)

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥ · ∥𝒗𝑤 𝑗∥
(15)

▶ Encode them into different dimensions?
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Extrinsic Evaluation

▶ Implicit assumption: there is a consistent, global ranking of word
embedding quality, and that higher quality embeddings will
necessarily improve results on any downstream task.

▶ Unfortunately, this assumption does not hold in
general [Schnabel et al., 2015].

▶ Examples
▶ empirical results show that it may not be able give much help to

syntactic parsing [Andreas and Klein, 2014]
▶ adding surface-form features always help ([Ji and Eisenstein, 2014]

and many other works)
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Further Extension



Re-weighting: Motivation

Word frequency in the descreasing order

Top words: the, and, to, was, it
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Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (16)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(17)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (18)

▶ Factorize the weighted matrix using SVD
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Context Window Size

Distributional hypothesis
Words that occur in the similar contexts tend to have similar
meanings

Are 𝑤𝑖 and 𝑤 𝑗 similar to each other, when they appear in the same
documents but far away from each other?
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Context Window Size (II)
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