CS 6501 Natural Language Processing

Efficient Fine-tuning for LLMs

Yangfeng Ji

Information and Language Processing Lab Department of Computer Science University of Virginia https://uvanlp.org/

Section I

Prefix Tuning

(Li and Liang, 2021)

Full Fine-tuning

For a text generation task, given the input x and output y, the full finetuning objective is defined as

$$\max_{\phi} \sum_{i \in Y_{ ext{idx}}} \log p_{\phi}(y_i \mid h_{< i})$$

where

- $Y_{
 m idx}$: indices of output tokens
- z_i is the i-th token of z=[x,y]
- $\bullet \,\, p_\phi(z_i \mid h_{< i}) = \operatorname{softmax}(W_\phi h_{i-1}^{\operatorname{top}})$

Prefix Tuning

Add k virtual tokens to the **latent representations** on **each layer**

- Number of virtual tokens k is a hyperparameter
 - $\circ \; k=2$ in this example

Latent Representations

Depending whether i is the virtual token or not, on the n-th layer, we have

$$h_i^n = egin{cases} P_ heta[i,n,:] & ext{if } i \in P_ ext{idx} \ \mathrm{LM}_\phi(z_i,h_{< i}^n) & ext{otherwise} \end{cases}$$

- P_{idx} : prefix index set (e.g., $\{1,2\}$)
- ϕ are fixed and θ are the only trainable parameters

Prefix Projection

The prefix embeddings can also be computed via

$$P[i,n,:] = \mathrm{MLP}_{ heta}(P_{ heta}'[i,:])$$

where

- $\mathrm{MLP}_{ heta}(\cdot)$ is a two-layer feedforward NN with the Tanh activation
- Empirically, this project produced more stable results than directly training the embedding $P_{ heta}[i,n,:]$

With Encoder-Decoder Framework

The idea of prefix tuning in the encoder-decoder framework is similar to the autoregressive framework, except the position of prefix embeddings

Experiment: Low-data Settings

In low-data setting, prefix-tuning is better than full fine-tuning (on both summarization and data-to-text generation)

Experiment: Prefix Length

Increase the size of prefix embeddings will increase the performance, until a certain threshold (task-dependent)

Experiment: Two Alternative Designs

- Embedding only
 - Only use the prefix embeddings in the input layer
 - Higher-layer representations are computed by the Transformer
- Infix tuning
 - Add virtual tokens between the input and output, as

 $[x, \mathrm{Infix}, y]$

Experiment: Results

	E2E								
	BLEU	NIST	MET	ROUGE	CIDEr				
Prefix	70.3	8.82	46.3	72.1	2.46				
	Embedding-only: EMB-{PrefixLength}								
Емв-1	48.1	3.33	32.1	60.2	1.10				
Емв-10	62.2	6.70	38.6	66.4	1.75				
Емв-20	61.9	7.11	39.3	65.6	1.85				
	Infix-tuning: INFIX-{PrefixLength}								
INFIX-1	67.9	8.63	45.8	69.4	2.42				
Infix-10	67.2	8.48	45.8	69.9	2.40				
INFIX-20	66.7	8.47	45.8	70.0	2.42				

Initialization

- Initialization with task-relevant words works better than taskirrelevant words
- Initialization with word embeddings works better than random initialization

Prefix Tuning vs. Discrete Prompt Optimization

Why prefix tuning is better

- From the initialization
- From the optimization perspective

Relation

discrete prompt optimization < embedding-only < prefix-tuning

Section II

Low-Rank Adaptation (LoRA)

(Hu et al., 2021)

Fine-tuning

Given a pair of example (x,y)

$$\max_{ heta} \log p_{\phi_0 + \Delta \phi(heta)}(y_t \mid x, y_{< t})$$

- ϕ_0 : pre-trained model parameter
- $\Delta\phi(heta)$: adapater produced by task-specific fine-tuning $\circ~\Delta\phi(heta)$ has the same size as ϕ_0
 - $\circ \ \Delta \phi(heta)$ is the function of heta
 - $\circ \; heta$ has a much smaller size than $\Delta \phi(heta)$

What in ϕ_0 ?

One sub-layer in the Transformer module is the multi-head attention. With ${\cal H}$ heads

- ullet For $i=1,\ldots,H$
 - Compute

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

• Concatenate multiple heads as $\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(\operatorname{head}_1,\ldots,\operatorname{head}_H)W_O$

Parameters

$$\{W^Q_i, W^K_i, W^V_i\}_{i=1}^H, W^O$$

16

What in ϕ_0 ? (II)

Another sub-layer in the Transformer encoder module

$$\operatorname{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Parameters

 W_1, b_1, W_2, b_2

Llama-2

Print the model architecture using model.parameters()

```
(0-31): 32 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
                (q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
                (k_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
                (v_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
                (o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
                (rotary_emb): LlamaRotaryEmbedding()
        (mlp): LlamaMLP(
                (gate_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
                (up_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
                (down_proj): Linear8bitLt(in_features=11008, out_features=4096, bias=False)
          (act fn): SiLUActivation()
        (input_layernorm): LlamaRMSNorm()
        (post_attention_layernorm): LlamaRMSNorm()
```

Low-Rank Adapter

For any parameter matrix $W_0 \in \mathbb{R}^{d imes k}$, the low-rank adapter $\Delta W \in \mathbb{R}^{d imes k}$ $\Delta W = B \cdot A$

where

- $B \in \mathbb{R}^{d imes r}$
- $A \in \mathbb{R}^{r imes k}$
- $r \ll \min(d,k)$ is the rank

Initialization

- ${\mbox{\circle*{-}}}$ Initialize A with a Gaussian distribution
- Initialize B as zero

Therefore, initially

$$\Delta W = A \cdot B = 0$$

Additionally, ΔW is scaled by $rac{lpha}{r}$

Applying LoRA to Transformer

- The discussion is limited to attention weights, e.g., $W^Q, W^K, W^V, W^O \label{eq:WQ}$
- Can be also used on other metrics, for example, the MLP sublayer

Results

Figure 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.

Which Weight Matrices?

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\left \begin{array}{c} W_q \\ 8 \end{array} \right $	$rac{W_k}{8}$	$rac{W_v}{8}$	$rac{W_o}{8}$	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	70.4 91.0	70.0 90.8	73.0 91.0	73.2 91.3	71.4 91.3	73.7 91.3	73.7 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of attention weights in GPT-3, given the same number of trainable parameters. Adapting both W_q and W_v gives the best performance overall. We find the standard deviation across random seeds to be consistent for a given dataset, which we report in the first column.

Optimal Rank?

	Weight Type	$\mid r=1$	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	$\left \begin{array}{c} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}\right.$	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI ($\pm 0.1\%$)	$\left \begin{array}{c} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}\right.$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a rank as small as one suffices for adapting both W_q and W_v on these datasets while training W_q alone needs a larger r. We conduct a similar experiment on GPT-2 in Section H.2.

Last Comments

Pay attention to the variable names. For example, in Falcon

```
(0-31): 32 x FalconDecoderLayer(
    (self_attention): FalconAttention(
        (maybe_rotary): FalconRotaryEmbedding()
        (query_key_value): Linear8bitLt(in_features=4544, out_features=4672, bias=False)
        (dense): Linear8bitLt(in_features=4544, out_features=4544, bias=False)
        (attention_dropout): Dropout(p=0.0, inplace=False)
    )
    (mlp): FalconMLP(
        (dense_h_to_4h): Linear8bitLt(in_features=4544, out_features=18176, bias=False)
        (act): GELU(approximate='none')
        (dense_4h_to_h): Linear8bitLt(in_features=18176, out_features=4544, bias=False)
    )
    (input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
}
```

Thank You!