
CS 6501 Natural Language
Processing
Efficient Fine-tuning for LLMs
Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://uvanlp.org/

1

https://uvanlp.org/

Section I
Prefix Tuning

(Li and Liang, 2021)

2

file:///home/yangfeng/Work/Projects/nlp-course-slides/cs6501-2024fall/lec12-efficient/main.md

Full Fine-tuning
For a text generation task, given the input and output , the full fine-
tuning objective is defined as

where

: indices of output tokens
 is the -th token of

3

Prefix Tuning
Add virtual tokens to the latent representations on each layer

Number of virtual tokens is a hyperparameter
 in this example

4

Latent Representations
Depending whether is the virtual token or not, on the -th layer, we have

: prefix index set (e.g.,)
 are fixed and are the only trainable parameters

5

Prefix Projection
The prefix embeddings can also be computed via

where

 is a two-layer feedforward NN with the Tanh activation
Empirically, this project produced more stable results than directly
training the embedding

6

With Encoder-Decoder Framework
The idea of prefix tuning in the encoder-decoder framework is similar to
the autoregressive framework, except the position of prefix embeddings

7

Experiment: Low-data Settings
In low-data setting, prefix-tuning is better than full fine-tuning (on both
summarization and data-to-text generation)

8

Experiment: Prefix Length
Increase the size of prefix embeddings will increase the performance, until
a certain threshold (task-dependent)

9

Experiment: Two Alternative Designs
Embedding only

Only use the prefix embeddings in the input layer
Higher-layer representations are computed by the Transformer

Infix tuning
Add virtual tokens between the input and output, as

10

Experiment: Results

11

Initialization

Initialization with task-relevant words works better than task-
irrelevant words
Initialization with word embeddings works better than random
initialization

12

Prefix Tuning vs. Discrete Prompt
Optimization
Why prefix tuning is better

From the initialization
From the optimization perspective

Relation

13

Section II
Low-Rank Adaptation (LoRA)

(Hu et al., 2021)

14

https://arxiv.org/abs/2101.00190

Fine-tuning
Given a pair of example

: pre-trained model parameter
: adapater produced by task-specific fine-tuning

 has the same size as
 is the function of

 has a much smaller size than

15

What in ?
One sub-layer in the Transformer module is the multi-head attention. With

 heads

For
Compute

Concatenate multiple heads as

Parameters

16

What in ? (II)
Another sub-layer in the Transformer encoder module

Parameters

17

Llama-2
Print the model architecture using model.parameters()

(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaAttention(

(q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()

)
(mlp): LlamaMLP(

(gate_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(up_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear8bitLt(in_features=11008, out_features=4096, bias=False)

 (act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()

)

18

Low-Rank Adapter
For any parameter matrix , the low-rank adapter

where

 is the rank

19

Initialization
Initialize with a Gaussian distribution
Initialize as zero

Therefore, initially

Additionally, is scaled by

20

Applying LoRA to Transformer
The discussion is limited to attention weights, e.g.,

Can be also used on other metrics, for example, the MLP sublayer

21

Results

22

Which Weight Matrices?

23

Optimal Rank?

24

Last Comments
Pay attention to the variable names. For example, in Falcon

(0-31): 32 x FalconDecoderLayer(
(self_attention): FalconAttention(

(maybe_rotary): FalconRotaryEmbedding()
(query_key_value): Linear8bitLt(in_features=4544, out_features=4672, bias=False)
(dense): Linear8bitLt(in_features=4544, out_features=4544, bias=False)
(attention_dropout): Dropout(p=0.0, inplace=False)

)
(mlp): FalconMLP(

(dense_h_to_4h): Linear8bitLt(in_features=4544, out_features=18176, bias=False)
(act): GELU(approximate='none')
(dense_4h_to_h): Linear8bitLt(in_features=18176, out_features=4544, bias=False)

)
(input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)

)

25

Thank You!

26

