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Section I
Transformer in Detail
    

Based on the Annotated Transformer from the Harvard NLP group.
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https://nlp.seas.harvard.edu/annotated-transformer/


Overview
Goal: explain every connection in this
figure
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Building Blocks
Two sub-layers

Multi-head attention layer
Feed-forward layer

Two additional building blocks

Layer normalization
Residual connection
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Single-head Self-attention
or just self-attention

: query matrix
: key matrix
: value matrix
: the dimension of query (and key)
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Computational Graph
Using query and key to compute the attention weights, and then select the
corresponding values

This attention mechanism is also called Scaled Dot-Product Attention
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Implementation
The implementation of 

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = scores.softmax(dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

No parameter involved so far
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Multi-head Attention
With  heads

For 
Compute

Concatenate multiple heads as

Parameters
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Illustration
The central component is the Scaled Dot-
Product Attention
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Implementation
class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()

self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)

    def forward(self, query, key, value, mask=None):
        # 1) Do all the linear projections in batch from d_model => h x d_k
        query, key, value = [
            lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
            for lin, x in zip(self.linears, (query, key, value))]

        # 2) Apply attention on all the projected vectors in batch.
        x, self.attn = attention(
            query, key, value, mask=mask, dropout=self.dropout)

clones()  creates 4 deep copies of nn.Linear 10



Feed-forward Network
    

Another sub-layer in the Transformer encoder module

    

Parameters
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Implementation
class PositionwiseFeedForward(nn.Module):

    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(self.w_1(x).relu()))
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Layer Normalization
class LayerNorm(nn.Module):

    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

(Ba et al., 2016)
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https://arxiv.org/pdf/1607.06450.pdf


Residual Connection
Residual connection from prior work

(He et al., 2016)
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https://arxiv.org/pdf/1512.03385.pdf


Implementation
This is applied to both the multi-head attention and the feed-forward
modules

class SublayerConnection(nn.Module):

    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))
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Encoder Layer
class EncoderLayer(nn.Module):

    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)
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Decoder Layer
class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"

    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)
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Review
The Transformer architecture
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Final Model
def make_model(
    src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1
):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab),
    )
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What Else?
Tokenization
Word embeddings
Positional embeddings
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Section II
BERT
    

(Devlin et al., 2018)
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https://arxiv.org/pdf/1810.04805.pdf


Pre-training
Using the Transformer encoder that we
discussed in the previous work

By default, the Transformer will read the
context from both sides, unless there is
a particularly designed mask

Input pattern

[CLS] sentence-A [SEP] sentence-B [SEP]
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Wordpiece Tokenization
Tokenization example

Input

Jet makers feud over seat width

Output:

['jet', 'makers', '##s', 'feud', 'over', 'seat', 'width', '.']

At decoding time, the model first produces a wordpiece sequence, and
then converts them into the corresponding word sequence.

(Wu et al., 2016) 23

https://arxiv.org/abs/1609.08144


Input Representation

The input embeddings are the sum of the token embeddings, the
sementation embeddings, and the position embeddings.
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Masked Language Model
During pre-training, randomly mask some words in the text and ask the
LM to predict them

I love drinking [MASK] coffee .

    

15% of tokens are masked
80% of them are replaced by [MASK]

10% of them are replaced by randomly selected tokens
10% of them are left as is
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Fine-tuning
To preform different tasks, BERTs are trained with different heads

For more information, please refer to this Hugging Face page 26

https://huggingface.co/docs/transformers/v4.46.2/en/model_doc/bert


Some Implementation
Details
More about model configuration and
tokenization.

A simple demo
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https://colab.research.google.com/drive/1dO-nynyo7HmDDBgodQU7gqGcF3Ck8UIH?usp=sharing


Section III
The GPT Family
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The GPT Family
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GPT-1: Conceptual Idea
One model for multiple tasks

12-layer Transformer decoder (Radford et al., 2018) 30

https://openai.com/research/language-unsupervised


GPT-1: Training Strategies
Unsupervised pre-training: given an unsupervised corpus of tokens

Supervised fine-tuning: given  where
 is the input sequence and  is the label

Fine-tuning works better when using  as an aux task
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GPT-2: Zero-shot Multi-task Learner
Zero-shot task performance of WebText LMs as a function of model size on
four NLP tasks

(Radford et al., 2019)
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https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf


Byte Pair Encoding
Idea: iteratively merge the most frequent character pairs in the sequences

Given the following four words: low , lowest , newer , wider

Create the character sequence
low   l o w </w>
lowest   l o w e s t </w>

newer   n e w e r </w>

wider   w i d e r </w>

(Sennrich et al., 2015)
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https://arxiv.org/pdf/1508.07909.pdf


Byte Pair Encoding (II)
Initial vocab

l o w e s t n r i d

First step of merge operation: l o   lo
low   lo w </w>

lowest   lo w e s t </w>

newer   n e w e r </w>

wider   w i d e r </w>

The vocab after the first merge operation: l o w e s t n r i d lo

Link 34

https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer


GPT-2: Results (Positive)
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GPT-2: Results (Negative)
Document summarization is a difficult task
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GPT-3: LMs as Few-shot Learners
The performance of GPT-3 on few-shot in-context learning

Larger models produce better performance 37



GPT-3: Specification
The specifications of GPT-3 and some small models compared in (Brown et
al., 2021)
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https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf


GPT-3: Datasets
The datasets used for GPT-3 pre-training
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GPT-3: In-Context Learning
Adding a few examples to the input context for demonstration. For
example
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GPT-3: ICL Performance
In general, in-context learning works with larger models and more
examples
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GPT-3: Negative Results
Some negative results of GPT-3

ARC: Question-answering dataset, containing questions from science
exams from grade 3 to grade 9
CoQA: A Conversational Question Answering Challenge
DROP: A Reading Comprehension Benchmark Requiring Discrete 42



Thank You!
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