
CS 6501 Natural Language
Processing
Transformers, BERT, and GPT
Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://uvanlp.org/

1

https://uvanlp.org/

Section I
Transformer in Detail

Based on the Annotated Transformer from the Harvard NLP group.

2

https://nlp.seas.harvard.edu/annotated-transformer/

Overview
Goal: explain every connection in this
figure

3

Building Blocks
Two sub-layers

Multi-head attention layer
Feed-forward layer

Two additional building blocks

Layer normalization
Residual connection

4

Single-head Self-attention
or just self-attention

: query matrix
: key matrix
: value matrix
: the dimension of query (and key)

5

Computational Graph
Using query and key to compute the attention weights, and then select the
corresponding values

This attention mechanism is also called Scaled Dot-Product Attention
6

Implementation
The implementation of

def attention(query, key, value, mask=None, dropout=None):
 "Compute 'Scaled Dot Product Attention'"
 d_k = query.size(-1)
 scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
 if mask is not None:
 scores = scores.masked_fill(mask == 0, -1e9)
 p_attn = scores.softmax(dim=-1)
 if dropout is not None:
 p_attn = dropout(p_attn)
 return torch.matmul(p_attn, value), p_attn

No parameter involved so far

7

Multi-head Attention
With heads

For
Compute

Concatenate multiple heads as

Parameters

8

Illustration
The central component is the Scaled Dot-
Product Attention

9

Implementation
class MultiHeadedAttention(nn.Module):
 def __init__(self, h, d_model, dropout=0.1):
 super(MultiHeadedAttention, self).__init__()

self.d_k = d_model // h
 self.h = h
 self.linears = clones(nn.Linear(d_model, d_model), 4)

 def forward(self, query, key, value, mask=None):
 # 1) Do all the linear projections in batch from d_model => h x d_k
 query, key, value = [
 lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
 for lin, x in zip(self.linears, (query, key, value))]

 # 2) Apply attention on all the projected vectors in batch.
 x, self.attn = attention(
 query, key, value, mask=mask, dropout=self.dropout)

clones() creates 4 deep copies of nn.Linear 10

Feed-forward Network

Another sub-layer in the Transformer encoder module

Parameters

11

Implementation
class PositionwiseFeedForward(nn.Module):

 def __init__(self, d_model, d_ff, dropout=0.1):
 super(PositionwiseFeedForward, self).__init__()
 self.w_1 = nn.Linear(d_model, d_ff)
 self.w_2 = nn.Linear(d_ff, d_model)
 self.dropout = nn.Dropout(dropout)

 def forward(self, x):
 return self.w_2(self.dropout(self.w_1(x).relu()))

12

Layer Normalization
class LayerNorm(nn.Module):

 def __init__(self, features, eps=1e-6):
 super(LayerNorm, self).__init__()
 self.a_2 = nn.Parameter(torch.ones(features))
 self.b_2 = nn.Parameter(torch.zeros(features))
 self.eps = eps

 def forward(self, x):
 mean = x.mean(-1, keepdim=True)
 std = x.std(-1, keepdim=True)
 return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

(Ba et al., 2016)
13

https://arxiv.org/pdf/1607.06450.pdf

Residual Connection
Residual connection from prior work

(He et al., 2016)
14

https://arxiv.org/pdf/1512.03385.pdf

Implementation
This is applied to both the multi-head attention and the feed-forward
modules

class SublayerConnection(nn.Module):

 def __init__(self, size, dropout):
 super(SublayerConnection, self).__init__()
 self.norm = LayerNorm(size)
 self.dropout = nn.Dropout(dropout)

 def forward(self, x, sublayer):
 "Apply residual connection to any sublayer with the same size."
 return x + self.dropout(sublayer(self.norm(x)))

15

Encoder Layer
class EncoderLayer(nn.Module):

 def __init__(self, size, self_attn, feed_forward, dropout):
 super(EncoderLayer, self).__init__()
 self.self_attn = self_attn
 self.feed_forward = feed_forward
 self.sublayer = clones(SublayerConnection(size, dropout), 2)
 self.size = size

 def forward(self, x, mask):
 "Follow Figure 1 (left) for connections."
 x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
 return self.sublayer[1](x, self.feed_forward)

16

Decoder Layer
class DecoderLayer(nn.Module):
 "Decoder is made of self-attn, src-attn, and feed forward (defined below)"

 def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
 super(DecoderLayer, self).__init__()
 self.size = size
 self.self_attn = self_attn
 self.src_attn = src_attn
 self.feed_forward = feed_forward
 self.sublayer = clones(SublayerConnection(size, dropout), 3)

 def forward(self, x, memory, src_mask, tgt_mask):
 "Follow Figure 1 (right) for connections."
 m = memory
 x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
 x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
 return self.sublayer[2](x, self.feed_forward)

17

Review
The Transformer architecture

18

Final Model
def make_model(
 src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1
):
 "Helper: Construct a model from hyperparameters."
 c = copy.deepcopy
 attn = MultiHeadedAttention(h, d_model)
 ff = PositionwiseFeedForward(d_model, d_ff, dropout)
 position = PositionalEncoding(d_model, dropout)
 model = EncoderDecoder(
 Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
 Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
 nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
 nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
 Generator(d_model, tgt_vocab),
)

19

What Else?
Tokenization
Word embeddings
Positional embeddings

20

Section II
BERT

(Devlin et al., 2018)

21

https://arxiv.org/pdf/1810.04805.pdf

Pre-training
Using the Transformer encoder that we
discussed in the previous work

By default, the Transformer will read the
context from both sides, unless there is
a particularly designed mask

Input pattern

[CLS] sentence-A [SEP] sentence-B [SEP]

22

Wordpiece Tokenization
Tokenization example

Input

Jet makers feud over seat width

Output:

['jet', 'makers', '##s', 'feud', 'over', 'seat', 'width', '.']

At decoding time, the model first produces a wordpiece sequence, and
then converts them into the corresponding word sequence.

(Wu et al., 2016) 23

https://arxiv.org/abs/1609.08144

Input Representation

The input embeddings are the sum of the token embeddings, the
sementation embeddings, and the position embeddings.

24

Masked Language Model
During pre-training, randomly mask some words in the text and ask the
LM to predict them

I love drinking [MASK] coffee .

15% of tokens are masked
80% of them are replaced by [MASK]

10% of them are replaced by randomly selected tokens
10% of them are left as is

25

Fine-tuning
To preform different tasks, BERTs are trained with different heads

For more information, please refer to this Hugging Face page 26

https://huggingface.co/docs/transformers/v4.46.2/en/model_doc/bert

Some Implementation
Details
More about model configuration and
tokenization.

A simple demo

27

https://colab.research.google.com/drive/1dO-nynyo7HmDDBgodQU7gqGcF3Ck8UIH?usp=sharing

Section III
The GPT Family

28

The GPT Family

29

GPT-1: Conceptual Idea
One model for multiple tasks

12-layer Transformer decoder (Radford et al., 2018) 30

https://openai.com/research/language-unsupervised

GPT-1: Training Strategies
Unsupervised pre-training: given an unsupervised corpus of tokens

Supervised fine-tuning: given where
 is the input sequence and is the label

Fine-tuning works better when using as an aux task
31

GPT-2: Zero-shot Multi-task Learner
Zero-shot task performance of WebText LMs as a function of model size on
four NLP tasks

(Radford et al., 2019)

32

https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf

Byte Pair Encoding
Idea: iteratively merge the most frequent character pairs in the sequences

Given the following four words: low , lowest , newer , wider

Create the character sequence
low l o w </w>
lowest l o w e s t </w>

newer n e w e r </w>

wider w i d e r </w>

(Sennrich et al., 2015)

33

https://arxiv.org/pdf/1508.07909.pdf

Byte Pair Encoding (II)
Initial vocab

l o w e s t n r i d

First step of merge operation: l o lo
low lo w </w>

lowest lo w e s t </w>

newer n e w e r </w>

wider w i d e r </w>

The vocab after the first merge operation: l o w e s t n r i d lo

Link 34

https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer

GPT-2: Results (Positive)

35

GPT-2: Results (Negative)
Document summarization is a difficult task

36

GPT-3: LMs as Few-shot Learners
The performance of GPT-3 on few-shot in-context learning

Larger models produce better performance 37

GPT-3: Specification
The specifications of GPT-3 and some small models compared in (Brown et
al., 2021)

38

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf

GPT-3: Datasets
The datasets used for GPT-3 pre-training

39

GPT-3: In-Context Learning
Adding a few examples to the input context for demonstration. For
example

40

GPT-3: ICL Performance
In general, in-context learning works with larger models and more
examples

41

GPT-3: Negative Results
Some negative results of GPT-3

ARC: Question-answering dataset, containing questions from science
exams from grade 3 to grade 9
CoQA: A Conversational Question Answering Challenge
DROP: A Reading Comprehension Benchmark Requiring Discrete 42

Thank You!

43

