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Neural Network Language Models



A Neural Language Model with Fixed Window Size

▶ Output distribution

𝑃(𝑋5 | 𝑿1:4) = softmax(𝑼𝒉+𝒃2) ∈ ℝ|V|
(1)

▶ Hidden layer: 𝑓 (·) could be any
nonlinear activation function

𝒉 = 𝑓 (𝑾𝒗 + 𝒃1) (2)

▶ Concatenated word embeddings

𝒗T = [𝒗T
𝑥1 , 𝒗

T
𝑥2 , 𝒗

T
𝑥3 , 𝒗

T
𝑥4] (3)

▶ Word indices: 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4

This is the very first neural neural language model
[Bengio et al., 2001], which has a similar network architecture as the
one discussed in lecture 03.
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A Neural Probabilistic Language Model

The first paragraph of the paper A Neural Probabilistic Language Model
[Bengio et al., 2001]

Curse of dimensionality
The sample complexity is an exponential function of the
dimensionality of data1

1For more precise description, please refer to [Shalev-Shwartz and Ben-David, 2014]
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A Neural Language Model with Fixed Window Size

Improvement over 𝑛-gram language
models
▶ Less parameters (with large 𝑛’s)
▶ No sparsity problem
▶ No smoothing is needed

Remaining issues
▶ Fixed window size – not friendly for

long texts
▶ Same word will be computed 𝑘 times

along the sliding window, where 𝑘 is
the window size

We need a new neural network architecture that can read words
continuously along predictions
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Recurrent Neural Networks



Recurrent Neural Networks (RNNs)

A simple RNN is defined by the following recursive function

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (4)

and depicted as

· · · 𝒉𝑡−1 𝒉𝑡 · · ·

𝒙𝑡−1 𝒙𝑡

where

▶ 𝒉𝑡−1: hidden state at time step 𝑡 − 1
▶ 𝒙𝑡 : input at time step 𝑡

▶ 𝒉𝑡 : hidden state at time step 𝑡
7



A Simple Transition Function

In the simplest case, the transition function 𝒇 is defined with an
element-wise Sigmoid function and a linear transformation of 𝒙𝑡 and
𝒉𝑡−1

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) = 𝝈(Wℎ𝒉𝑡−1 +W𝑖𝒙𝑡 + 𝒃) (5)

where

▶ 𝒙𝑡 : input word embedding
▶ 𝒉𝑡−1: hidden statement from previous time step
▶ Wℎ : parameter matrix for hidden states
▶ W𝑖 : parameter matrix for inputs
▶ 𝒃: bias term (also a parameter)

8



Sigmoid Function

A Sigmoid function with one-dimensional input 𝑥 ∈ (−∞,∞)

𝜎(𝑥) = 1
1 − 𝑒−𝑥

The potential numeric issue caused by the Sigmoid function

▶ 𝜎(𝑥) → 1 with 𝑥 ≫ 6
▶ 𝜎(𝑥) → 0, 𝑥 ≪ −6

The output of the Sigmoid function will approximate a constant,
when the input value is beyond certain ranges

9



Unfolding RNNs

We can unfold this recursive definition of a RNN

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒉𝑡−1) (6)

as

𝒉0 𝒉1 · · · 𝒉𝑡−1 𝒉𝑡 · · ·

𝒙1 𝒙𝑡−1 𝒙𝑡

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒉𝑡−2))
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , 𝒉𝑡−3)))
= · · ·
= 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , · · · 𝒇 (𝒙1 , 𝒉0) · · · ))) (7)
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Base Condition

Base condition defines the starting point of the recursive computation

𝒉0 𝒉1 · · ·

𝒙1

𝒉𝑡 = 𝒇 (𝒙𝑡 , 𝒇 (𝒙𝑡−1 , 𝒇 (𝒙𝑡−2 , · · · 𝒇 (𝒙1 , 𝒉0) · · · ))) (8)

▶ 𝒉0: zero vector or parameter
▶ 𝒙1: input at time 𝑡 = 1
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RNN for Sequential Prediction

In general, RNNs can be used for any sequential modeling tasks

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

12



Sequential Modeling as Classification

𝑦1 𝑦2 𝑦3 𝑦4

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4

𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at each time step 𝑡

𝑦̂𝑡 = argmax
𝑦

𝑃(𝑦; 𝒉𝑡) (9)

▶ Loss at single time step 𝑡

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) = − log𝑃(𝑦𝑡 ; 𝒉𝑡) (10)

▶ The total loss

ℓ =

𝑇∑
𝑡=1

𝐿𝑡(𝑦𝑡 , 𝑦̂𝑡) (11)
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RNN Language Modeling



Language Models

A language model defines the probability of 𝑥𝑡 given
𝒙 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑡−1) as

𝑃(𝑥𝑡 | 𝑥1 , . . . , 𝑥𝑡−1) (12)

and the joint probability as

𝑃(𝒙1:𝑇) = 𝑃(𝑥1) · 𝑃(𝑥2 | 𝑥1)
· · · · ·
·𝑃(𝑥𝑇 | 𝑥1 , 𝑥2 , . . . , 𝑥𝑇−1)

15



Language Modeling with RNNs

Using RNNs for language modeling

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

with two special tokens

{□, 𝑥1 , . . . , 𝑥𝑇 ,■}

16



RNN Language Models

For a given sentence {𝑥1 , . . . , 𝑥𝑡}, the input at time 𝑡 is word
embedding 𝒙𝑡

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

The probability distribution of next word 𝑋𝑡

𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1) =
exp(𝒘T

𝑜,𝑥𝒉𝑡−1)∑
𝑥′∈Vexp(𝒘T

𝑜,𝑥′𝒉𝑡−1)
(13)

where

▶ 𝒘𝑜,𝑥 is the output weight vector (parameter) associated with
word 𝑥

▶ V is the word vocabulary 17



Special Cases

Similar to statistical language modeling, there are also two special
cases that we need to consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

{□, 𝑥1 , . . . , 𝑥𝑇 ,■}

The corresponding prediction functions are defined as

▶ At time 𝑡 = 1
𝑃(𝑋1 = 𝑥) ∝ exp(𝒘T

𝑜,𝑥𝒉□) (14)
▶ At time 𝑡 = 𝑇

𝑃(𝑋𝑇 = ■ | 𝒙1:𝑇−1) ∝ exp(𝒘T
𝑜,𝑥𝒉𝑇−1) (15) 18



Challenge of Training RNNs



Objective

The training objective for each timestep is to predict the next token in
the text

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Prediction at step 𝑡, 𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1) =
exp(𝒘T

𝑜,𝑥𝒉𝑡−1)∑
𝑥′∈V exp(𝒘T

𝑜,𝑥′𝒉𝑡−1)

▶ Loss at step 𝑡, 𝐿𝑡 = − log𝑃(𝑋𝑡 = 𝑥 | 𝒙1:𝑡−1)

20



Gradients

Let 𝜽 denote all model parameters

𝜕ℓ

𝜕𝜽
=

𝑇∑
𝑡=1

𝜕𝐿𝑡
𝜕𝜽

(16)

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

Backpropagation Through Time [Rumelhart et al., 1985, BPTT]

21



Model Parameters

Before computing the gradient of each 𝐿𝑡 with respect to model
parameters, let us count how many parameters that we need consider

𝑥1 𝑥2 𝑥3 𝑥4 ■

𝒉□ 𝒉1 𝒉2 𝒉3 𝒉4

□ 𝒙1 𝒙2 𝒙3 𝒙4

▶ Output parameter matrix 𝑾𝑜 = (𝒘𝑜,1 , . . . ,𝒘𝑜,𝑉 )

▶ Input word embedding matrix 𝑿 = (𝒙1 , . . . , 𝒙𝑉 )
▶ Neural network parameters 𝑾ℎ ,𝑾𝑖 , 𝒃
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Backpropagation Through Time

Take time step 𝑡 as an example, we can take a look the gradient
computation of some specific parameters

▶ Output model parameter 𝜕𝐿𝑡
𝜕𝒘𝑜,·

▶ Neural network parameters, for example 𝑾ℎ

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
( 𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(17)

Similar patterns for the other two neural network parameters 𝑾𝑖

and 𝒃

▶ Word embedding 𝜕𝐿𝑡
𝜕𝒙𝑡′

▶ E.g., word embedding 𝒙𝑡′ is the input of 𝒉𝑡 if 𝑡′ ≤ 𝑡, so ...
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Challenges

For each timestep, we need to compute the gradient using the chain
rule:

𝜕𝐿𝑡
𝜕𝑾ℎ

=

𝑡∑
𝑖=1

{ 𝜕𝐿𝑡
𝜕𝒉𝑡
·
( 𝑡−1∏

𝑗=𝑖

𝜕𝒉 𝑗+1

𝜕𝒉 𝑗

)
· 𝜕𝒉𝑖

𝜕𝑾ℎ

}
(18)

The chain rule of gradient will cause two potential problems in
training RNNs

▶ vanishing gradients: 𝜕𝐿𝑡
𝜕𝜽 → 0

▶ exploding gradients: 𝜕𝐿𝑡
𝜕𝜽 ≥ 𝑀

[Pascanu et al., 2013]

24



Exploding Gradients

Solution: norm clipping [Pascanu et al., 2013].

Consider the gradient 𝒈 = 𝜕ℓ
𝜕𝜽 ,

𝒈̂ ← 𝜏 · 𝒈

∥𝒈 ∥ (19)

when ∥𝒈 ∥ > 𝜏.

▶ Usually, 𝜏 = 3 or 5 in practice.
▶ Smaller gradient will cause slower learning progress
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Vanishing Gradients

Solution:

▶ initialize parameters carefully
▶ replace hidden state transition function 𝝈(·)with other options

𝒇 (𝒙𝑡 , 𝒉𝑡−1) = 𝝈(Wℎ𝒉𝑡−1 +W𝑖𝒙𝑡 + 𝒃) (20)

▶ LSTM [Hochreiter and Schmidhuber, 1997]
▶ GRU [Cho et al., 2014]
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Long Short-Term Memory

From the first page of the original paper proposing LSTM
[Hochreiter and Schmidhuber, 1997]

27



Long Short-Term Memory

Rather than directly taking input and hidden state as simple
transition function, LSTM relies on three cates to control how much
information it should take from input and hidden state before
combining them together

𝒊𝑡 = 𝜎(W𝑥𝑖𝒙𝑡 +Wℎ𝑖𝒉𝑡−1 +W𝑐𝑖 𝒄𝑡−1 + 𝒃𝑖 )
𝒇𝑡 = 𝜎(W𝑥 𝑓 𝒙𝑡 +Wℎ 𝑓 𝒉𝑡−1 +W𝑐 𝑓 𝒄𝑡−1 + 𝒃 𝑓 )
𝒄𝑡 = 𝒇𝑡 ◦ 𝒄𝑡−1 + 𝒊𝑡 ◦ tanh(W𝑥𝑐𝒙𝑡 +Wℎ𝑐𝒉𝑡−1 + 𝒃𝑐 )
𝒐𝑡 = 𝜎(W𝑥𝑜𝒙𝑡 +Wℎ𝑜𝒉𝑡−1 +W𝑐𝑜 𝒄𝑡 + 𝒃𝑜 )
𝒉𝑡 = 𝒐𝑡 ◦ tanh(𝒄𝑡 )

where ◦ is the element-wise multiplication, {𝑾·} and {𝒃·} are
parameters. [Graves, 2013]
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