
CS 6501 Natural Language
Processing
Statistical Language Modeling

Yangfeng Ji

Information and Language Processing Lab

Department of Computer Science

University of Virginia



Overview

1. Introduction

2. 𝑁-gram Language Models

3. Generation with Bi-gram Models

4. Smoothing Techniques

5. Language Model Evaluation

1



Introduction



Word Prediction with Context

Consider the example, what words are likely to follow

Please turn your homework ...

Although we do not know the actual word in the original text, we

have a good sense about what of these following words are likely to

follow

▶ in

▶ over

▶ refrigerator

▶ the

[Jurafsky and Martin, 2019]
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Mathematical Formulation

▶ Let 𝑋1 , 𝑋2 , . . . , 𝑋𝑡−1 be the random variables representing the

words in the context, and 𝑋𝑡 be the next word that we would like

the model to predict.

▶ Similarly, we can formulate this prediction as a classification

problem, where 𝑿1:𝑡−1 = 𝑋1 , 𝑋2 , . . . , 𝑋𝑡−1 are the input words and

𝑋𝑡 is the output, we can write the classifier in a probabilistic form

𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1) or 𝑃(𝑋𝑡 | 𝑿1:𝑡−1) (1)

▶ The topics in this and the next lectures will offer two modeling

methods in equation 1.

▶ Difference with the word embedding methods discussed in the

previous lecture

▶ Skip-gram model: predicting the surrounding words

▶ Language models: predicting the next word
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Word Prediction in Input Methods

Input methods use language models to predict the next likely words,

to speed up the typing
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Writing a Poem?

Trevor Noah and Amanda Gorman writing poems with the input

methods on their phones

Figure: The Daily Social Distancing Show: Bonus Track feat. Amanda

Gorman

Link
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Joint Probability and Chain Rule

Given the conditional probability 𝑃(𝑋𝑡 | 𝑿1:𝑡−1), to evaluate the qualty

of a text, we need the chain rule in probability to factorize the joint

probability 𝑃(𝑿1:𝑡) into a series of conditional probabilities.

𝑃(𝑋1 , 𝑋2 , · · · , 𝑋𝑡) = 𝑃(𝑋1)𝑃(𝑋2 , · · · , 𝑋𝑘 | 𝑋1)

= 𝑃(𝑋1)𝑃(𝑋2 | 𝑋1)𝑃(𝑋3 , · · · , 𝑋𝑡 | 𝑋1 , 𝑋2)
= 𝑃(𝑋1)𝑃(𝑋2 | 𝑋1)𝑃(𝑋3 | 𝑋1 , 𝑋2) · · ·

𝑃(𝑋𝑡 | 𝑋1 , · · · , 𝑋𝑡−1)

=

𝑘∏
𝑖=1

𝑃(𝑋𝑖 | 𝑋1 , . . . , 𝑋𝑖−1)

(2)
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Speech Recognition

Given a voice signal, a language model in speech recognition will

evaluate the likelihood of decoded texts

𝑃(I saw a van) ≫ 𝑃(eyes awe of an) (3)

[Jurafsky and Martin, 2019]
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Writing Assistant

Grammarly:

A good writing assistant system involves two tasks

▶ evaluate the quality of a text

▶ generate revision suggestions

A language model cannot provide support to all functions directly,

but is a critical component in the backend system
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Applications

▶ Generative tasks: predicting the next word given a context

▶ Word prediction

▶ Text generation

▶ . . .

▶ Discriminative tasks: evaluating the quality of texts

▶ Speech recognition

▶ Machine translation

▶ Document summarization

▶ . . .
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𝑁-gram Language Models



Problem Definition

Given a vocab V that contains all the possible word types, then the

prediction of 𝑋𝑡 can be formulated as

𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1) =? (4)

The challenges of modeling 𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1)

▶ it is a categorical distribution defined on the vocab V

▶ Unfortunately, we cannot do much on this problem, other than

using hiarchical structures in softmax function (e.g., hierarchical

softmax and class-factored softmax)

▶ it consider the entire context from the very first word 𝑋1 to the

previous word 𝑋𝑡−1

▶ The main topic of this section
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Parameter Estimation

With a collection of texts as training examples, the simple method of

estimating the probabilities is using maximum likelihood estimation.

▶ In the first lecture, we discussed the MLE of a Bernoulli

distribution

𝑃̂(𝑋 = 1) =
∑𝑁
𝑖=1

𝛿(𝑥𝑖 , 1)
𝑁

=
𝑐(𝑋 = 1)

𝑁
(5)

where 𝑐(𝑋 = 1) is the number of observations with value 1

▶ Similarly, to estimate the conditional probability 𝑃(𝑋𝑡 | 𝑿1:𝑡−1),
we have

𝑃̂(𝑋𝑡 = 𝑥𝑡 | 𝑿1:𝑡−1 = 𝒙1:𝑡−1) =
𝑐(𝒙1:𝑡)
𝑐(𝒙1:𝑡−1)

(6)

where 𝑐(𝒙1:𝑡−1) is the number that text 𝒙1:𝑡−1 appears in the

training examples, and 𝑐(𝒙1:𝑡) is the number that text 𝒙1:𝑡 appears

in the training examples.

[Collins, 2017]
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Parameter Estimation (Cont.)

Imagine we have a huge collection of texts for parameter estimation

▶ With the sentence “the dog barks”

𝑃̂(𝑋3 = barks | 𝑿1:2 = the dog) = 𝑐(𝑿1:3 = the dog barks)
𝑐(𝑿1:2 = the dog) (7)

▶ With the sentence “the dog barks at the dumbwaiter where

the thief is hiding”

𝑃̂(𝑋11 = hiding | 𝑿1:10 = the dog · · · is)

=
𝑐(𝑋1:11 = the dog · · · is hiding)

𝑐(𝑋1:10 = the dog · · · is)
(8)
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Parameter Estimation (Cont.)

For this specific sentence, we only one training example even if we

collect all the texts from the Internet

𝑃̂(𝑋11 = hiding | 𝑿1:10 = the dog · · · is) = 1.0
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Simplification: Uni-gram

▶ The main challenge of parameter estimation is the long-term

dependence between 𝑋𝑡 and 𝑿1:𝑡−1

▶ Uni-gram: assume all words are independent with each other.

With this assumption, we only need to estimate the probability of

each individual word (no conditional probability involved)

𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1) ≈ 𝑃(𝑋𝑡) (9)

▶ For example

𝑃(barks | the dog) ≈ 𝑃(barks) (10)

▶ Comments: the tradeoff between prediction power and number

of parameters

▶ It has extremely limited prediction power

▶ Number of parameters: 𝑉 = |V|
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Bi-gram Models

▶ To find a good balance between the prediction power and

parameter estimation challenge, we can limit the contextual

information used in a language modeling.

▶ Bi-gram model: uses only one word 𝑋𝑡−1 from the previous

context to predict the current word 𝑋𝑡

𝑃(𝑋𝑡 | 𝑿1:𝑡−1) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−1) (11)

▶ For example, given the text “the dog barks”, the prediction of

the last word barks in a bi-gram model is formulated as

𝑃(barks | the dog) ≈ 𝑃(barks | dog) (12)

▶ In probabilistic modeling, a bi-gram model is an application of

the first-order Markov model

17
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Markov Property

First-order Markov property: given

𝑋 𝑌 𝑍

𝑃(𝑍 | 𝑋,𝑌) = 𝑃(𝑍 | 𝑌) (13)

It simplifies the conditional probability

𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−1) (14)

and also the joint probability

𝑃(𝑋1 , . . . , 𝑋𝑡) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−1) · 𝑃(𝑋𝑡−1 | 𝑋𝑡−2) · · ·
𝑃(𝑋2 | 𝑋1) · 𝑃(𝑋1) (15)
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Special Tokens

Consider the application of using a bi-gram model

𝑃(the dog barks) = 𝑃(the) · 𝑃(dog | the)
𝑃(barks | dog)

The model needs

▶ a special token (□) to distinguish 𝑃(the) from the marginal

distribution of word “the”

▶ another special token (■) to indicate the end of a sentence

Factorization with special tokens:

𝑃(□ the dog barks ■) = 𝑃(the | □) · 𝑃(dog | the)
𝑃(barks | dog) · 𝑃(■ | barks)
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Example: Parameter Estimation

Example sentences

▶ □ I am Sam ■

▶ □ Sam I am ■

▶ □ I do not like green eggs and ham ■

Some of the probabilities:

𝑃̂(I | □) = 2

3

𝑃̂(■ | Sam) = 1

2

𝑃̂(do | I) = 1

3

(16)

[Jurafsky and Martin, 2019]
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Issues with a Fixed Vocabulary

▶ 𝑃(𝑋𝑡 | 𝑋𝑡−1) is defined a fixed vocabulary, for normalization

purpose

𝑃(𝑋𝑡 | 𝑋𝑡−1) =
𝑐(𝑋𝑡−1 , 𝑋𝑡)∑

𝑋′∈V 𝑐(𝑋𝑡−1 , 𝑋′) (17)

▶ Issues with a fixed vocabulary

▶ Unknown words: word 𝑥 is not in the vocabulary

▶ Zero probability: word combination (𝑥, 𝑥′) never appears in the

training set
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Unknown Words

Replace all words that are not in the vocab with a special token unk.

For example

▶ Original text: “the dog barks at the dumbwaiter where the

thief is hiding”

▶ After preprocessing: “the dog barks at the unk where the

thief is hiding”

Quiz
Can we simply ignore the unknown words? For example, what if

the preprocessed text is

“the dog barks at the where the thief is hiding”
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Tri-gram Models

We can extend the conditional probability to depend on previous two

tokens

𝑃(𝑋𝑡 | 𝑋1 , . . . , 𝑋𝑡−1) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1) (18)

Comments

▶ More dependency leads to more accurate predictions

▶ Parameter estimation

𝑃̂(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1) =
𝑐(𝑿𝑡−2:𝑡)
𝑐(𝑿𝑡−2:𝑡−1)

(19)
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Number of Parameters

▶ Uni-gram model

▶ Ignore context words completely 𝑃(𝑋𝑡 | 𝑿1:𝑡−1
) ≈ 𝑃(𝑋𝑡 )

▶ Number of parameters O(|V|)
𝑋1 · · · 𝑋|V|

𝑃(𝑋𝑡 )

▶ Bi-gram model

▶ Use only the adjacent word 𝑃(𝑋𝑡 | 𝑿1:𝑡−1
) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−1

)
▶ Number of parameters O(|V|2)

𝑃(𝑋𝑡 | 𝑋𝑡−1) 𝑋1 · · · 𝑋|V|

𝑋1

.

.

.

𝑋|V|

▶ Tri-gram model

▶ Use two preceding words 𝑃(𝑋𝑡 | 𝑿1:𝑡−1
) ≈ 𝑃(𝑋𝑡 | 𝑋𝑡−2

, 𝑋𝑡−1
)

▶ Number of parameters O(|V|3)
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Generation with Bi-gram Models



Demo Code

▶ A bi-gram model with no smoothing

▶ Training with the dataset from the arXiv paper abstracts

▶ Generating by randomly sampling from this bi-gram model

Checkout the demo code for some examples
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Smoothing Techniques



High-order Markov Models

A motivating example:

The printer on the 5th floor of Rice hall crashed

𝑛-gram Language Models

▶ Uni-gram: 𝑃(𝑋𝑡)
▶ Bi-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−1)
▶ Tri-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1)
▶ 4-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−3 , 𝑋𝑡−2 , 𝑋𝑡−1)
▶ 5-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−4 , 𝑋𝑡−3 , 𝑋𝑡−2 , 𝑋𝑡−1)
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Discounting

It is the same method used in parameter estimation of naive Bayes

classifiers

𝑃(𝑋𝑡 | 𝑋𝑡−1) =
𝑐(𝑋𝑡−1 , 𝑋𝑡) + 𝛼

𝑐(𝑋𝑡−1) + 𝛼𝑉
(20)

where 𝛼 > 0 is a hyper-parameter.
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Linear Interpolation

Estimate the following three models with MLE:

▶ Uni-gram: 𝑃(𝑋𝑡)
▶ Bi-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−1)
▶ Tri-gram: 𝑃(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1)

Then, the new probability of 𝑋𝑡 given 𝑋𝑡−2 and 𝑋𝑡−1 is

𝑃𝐿𝐼(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1) = 𝜆1 · 𝑃(𝑋𝑡) + 𝜆2 · 𝑃(𝑋𝑡 | 𝑋𝑡−1)
+𝜆3 · 𝑃(𝑋𝑡 | 𝑋𝑡−2 , 𝑋𝑡−1) (21)

{𝜆𝑖} are learned with a held-out corpus (a development set).
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Language Model Evaluation



Sentence Evaluation (I)

Evaluation with joint probabilities

𝑃(I love black coffee) vs. 𝑃(black coffee pleases me) (22)

Direct comparison between the probabilities will tell us which

sentence is more fluent.
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Sentence Evaluation (II)

Limitation of comparing joint probabilities directly

𝑃(I love black coffee) vs. 𝑃(I like black coffee very much) (23)

Due to the length difference, the second probability may always be

smaller than the first.
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Likelihood

▶ Test data: including the special tokens

𝒙1 , 𝒙2 , . . . , 𝒙𝑀

▶ Likelihood

Log-lik({𝒙𝑀𝑚=1
}) = log

2

𝑀∏
𝑚=1

∏
𝑡=1

𝑃(𝑥𝑚,𝑡 | 𝒙𝑚,1:𝑡−1) (24)

=

𝑀∑
𝑚=1

∑
𝑡=1

log
2
𝑃(𝑥𝑚,𝑡 | 𝒙𝑚,1:𝑡−1) (25)

▶ Factors

▶ Number of the tokens

▶ No intuitive explanation
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Perplexity

The definition of perplexity is

Perplexity = 2
− 1

𝑇 Log-lik({𝒙𝑀
𝑚=1

})
(26)

where 𝑇 is the total number of the log probabilities in Log-lik({𝒙𝑀
𝑚=1

}).
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Special Case

▶ An impossible case

𝑃(𝑥𝑡 | 𝒙1:𝑡−1) = 1 (27)

▶ Perplexity

Perplexity = 2
− 1

𝑇

∑𝑀
𝑘=1

∑
𝑚=1

log
2

1

= 2
0

= 1

(28)
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Special Case (II)

▶ A trivial case

𝑃(𝑥𝑡 | 𝒙1:𝑡−1) =
1

|V| (29)

▶ Perplexity

Perplexity = 2
− 1

𝑇

∑𝑀
𝑘=1

∑
𝑚=1

log
2

1

|V|

= 2
− 1

𝑇 (𝑇·log
2

1

|V| )

= 2
− log

2

1

|V|

= |V|

(30)
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Typical Values of Perplexity

▶ |V| = 50𝐾

▶ A uni-gram model: Perplexity = 955

▶ A bi-gram model: Perplexity = 137

▶ A tri-gram model: Perplexity = 74

Lower is better

[Collins, 2017]
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A Few Comments on Perplexity

Perplexity

▶ is an intrinsic evaluation measurement

▶ is not necessarily correlated with the performance of

▶ e.g., lower perplexity does not mean better translation (wrt BLEU

score)

▶ is not directly comparable even on the same test data

▶ you need the exactly same input for comparison
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