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Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis

Words that occur in the similar contexts tend to have

similar meanings

Examples

> to have a splendid time in Rome

> to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]



Another Example

Consider the following examples, although we do not know what
exactly words are missing, to some extent we can still guess the
meanings of those missing words
> is delicious sauteed with garlic.
is superb over rice.

leaves with salty sauces ...

[Jurafsky and Martin, 2019]



Latent Semantic Analysis




Word-document Matrix

For a corpus of d documents over a vocabulary 7, the cooccurence
matrix is defined as C,

C = [cij]eR™
€11 .- C14d
= (1)
Cp1 -+ Cod

where

> v = || is the size of vocab
» d is the number of the documents

> cjj is the count of word i in document j



Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Documents
Word |y 9 374 5 6 7 8
w1 01 0 0 0O O O O
wa 0 0 1 0 0 3 0 O
w3 1 0 0 2 0 0 5 0
wy 30 0 1 1 0 2 0
ws 01 3 0 1 2 1 0
we 1 2 0 0 0 0 1 O
wy 01 0 1 0 1 0 1
wg 0o 0 0 0 0O 7 0 O
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Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Documents
Word |y 9 374 5 6 7 8
w1 01 0 0 0O O O O
wa 0 0 1 0 0 3 0 O
w3 1 0 0 2 0 0 5 0
wy 30 0 1 1 0 2 0
ws 01 3 0 1 2 1 0
we 1 2 0 0 0 0 1 O
wy 01 0 1 0 1 0 1
wg 0o 0 0 0 0O 7 0 O

Two views of this matrix

» Each column d; is a document (BoW) representation (same as the
one used in logistic regression)
» Each row wy is a word representation (by considering a context is a

whole document) 7



Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

> We can use row vectors {wy} to represent words by considering
each document as a context,



Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

> We can use row vectors {wy} to represent words by considering
each document as a context,

> A typical way of measuring word similarity is using cosine

values, for two word representations wy and wy,, we have

T
w, Wi

cos-sim(wy, Wy ) = ———————
(@e i) = 0T el

where
T _
> w Wi = i1 Wk, Wi

> |lwill2 = V{wy, wi)



The Sparsity Issue in Representations

Compute the dot product of the following two pairs
T

> w, w2
> w]ws
Documents

Word |1y 374 5 6 7 8
w1 o 1 0 0 0 O 0 O
wo o 0 1 0 0 3 0 0
w3 1 0 0 2 0 O 5 0
Wy 3 0 0 1.1 0 2 O
wWs o 1 3 0 1 2 1 0
We 1 2 0 0 0 0 1 O
wy o 1 0 1 0 1 0 1
wg o 0 0o 0 o0 7 0 O
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The Sparsity Issue in Representations

Compute the dot product of the following two pairs

> wIwzz 0
> wws=0
Documents

Word |1y 374 5 6 7 8
w1 o 1 0 0 0 O 0 O
wo o 0 1 0 0 3 0 0
w3 1 0 0 2 0 O 5 0
Wy 3 0 0 1.1 0 2 O
wWs o 1 3 0 1 2 1 0
We 1 2 0 0 0 0 1 O
wy o 1 0 1 0 1 0 1
wg o 0 0o 0 o0 7 0 O

> The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

» This motivates us to find a way of compressing these sparse raw
vectors



Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors
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Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors

(b) should contain similar information as the original sparse vectors

Matrix decomposition on C will help us to identify low-dimensional
representations

10



Singular Value Decomposition (SVD)

Using SVD, the word-document matrix C can be decomposed into a
multiplication of three matrices

C=Uy-%y-V,. (3)

> U, € R"*Y is an orthonormal matrix
> V, € R js an orthonormal matrix

> X) € R% is a diagonal matrix — each component on the
diagonal is called a singular value

11



SVD: Example

Given a matrix C as

1.0 2.0
€= [ 3.0 4.0 ] )
The decomposition is
. -0.40 -0.91 546 0 ;| 058 -0.82
| =091 0.40 1 0 037 | 0.82 -0.58

(5)

To obtain a low-dimensional approximation of C, we can remove one
of the singular values. But what matters is which one we are going to
remove?

12



SVD for Low-dimensional Approximation

> Option 1: remove the first singular value

| 2o 0 oo || o o]

G -091 0.40 0 0.37 0.82 -0.58
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SVD for Low-dimensional Approximation

> Option 1: remove the first singular value

el A gy

G -091 0.40 0 0.37 0.82 -0.58
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SVD for Low-dimensional Approximation

> Option 1: remove the first singular value

c ~040 —091 ] [0 0 | [ -058 -0.82
! ~091 0.40 0 0.37 082 -0.58
~0.91 ~0.28 0.20

N 0'37'[ 0.40 }'[0'82 _0'58]_[ 0.12 —0.09]

13



SVD for Low-dimensional Approximation

> Option 1: remove the first singular value

-0.91 0 0 -0.58
0.40 0 0.37 0.82

C

> Option 2

C

-0.40
-0.91

0.37 - [

: remove the second singular value

~091 | [546 0] [ -0.58
0.40

-0.40
-0.91

5.46 - [

-0.91
0.40

-0.40
-0.91

[ -0.28

} -[0.82 -0.58] = | 012

0 0] | 082

1.26

]-[—0.58 -0.82] = [ 588

-0.82
-0.58

0.20
-0.09 |

~0.82 |
~0.58 |

1.79
4.07

13



SVD for Low-dimensional Approximation

> Option 1: remove the first singular value

o _ | 040 —091] 10 0 | [-058
V7 | —091 040 0 0.37 0.82
~0.91 [ —0.28

= 0.37-[ 0.40 ]-[0.82 —0.58]-» 01

> Option 2: remove the second singular value

c, _ | 040 091 546 0]
27 | 2091 040 0 0
~0.40
— 546 [ ool ]-[—0.58 -0.82] =

[ -0.58

| 082

1.26
2.88

-0.82
-0.58

0.20
-0.09 |

~0.82 |
~0.58 |

1.79
4.07

Therefore, ||C — Ci||r > ||C — C3||r. In other words, removing the
smaller singular value creates a better low-dimensional

approximation.

13



SVD: Example (Cont.)

Given a matrix C as
1.0 2.0

C=|30 40 (6)
50 6.0

The decomposition is

[ 023 -0.88 041
u = 052 -0.24 -0.82 (7)
082 040 041

[ 953 0
r = 0 051 8)
0 0
[ 0.62 078
T _
V= oz -0 ©)

The maximum number of non-zero singular values is min(v, d),

where v and d are the numbers of rows and columns respectively.
14



SVD in General Form

The full decomposition of matrix C

] - -
C=|uw ... u |- . : (10)
| | 0? — U4 —

—
Uy o VOT

As Up and Vj are both orthonormal matrices, Xy is the only one that
reflects the “magnitude” of matrix C.

15



SVD in General Form

The full decomposition of matrix C

| | 01 -— U1 —
C=|uw ... u |- . : (10)
| | 0? — U4 —
—————
Uy o VOT

As Up and Vj are both orthonormal matrices, Xy is the only one that
reflects the “magnitude” of matrix C.

For a large-scale sparse matrix, the singular values in Xy often have
big differences.

15



Singular Values

A real example: C with about 9K words and 71.8K sentences is
constructed from a dataset used in the demo code. The following plot
shows the first/top 500 singular values in the decreasing order.
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Dimension indices

With the index — 9K, the singular values are close to 0.
16



SVD for Approximation

With SVD, we can approximate C only keep the first k singular values

in Xy, as X
| | 01 -— U1 —
Cx|wm ... uc |- : (11)
| | o | | — o —
e
u r VT

where U € R,V € R™ and L € Rk,

17



SVD for Approximation

With SVD, we can approximate C only keep the first k singular values

in Xy, as X
][ -
Cx|wm ... uc |- : (11)
| | o | | — w —
—_—
u r VT

where U € R,V € R™ and L € Rk,

For the previous case, we can pick k € [200, 400] without worrying
about losing too much information.

17



Lower-dimensional Word Representations

Given
cC~u-z-v' (12)

to construct low-dimensional word representation, we can multiply V
on both side of equation 12 and then have

W=U-Z~C-Vexr?™ (13)

18



We collected the dataset from the abstracts of NLP papers from the
arXiv website. Some example sentences from the dataset

» The author uses the entropy of the ideal Bose-Einstein
gas to minimize losses in computer-oriented languages.

> In this paper, current dependency based treebanks are
introduced and analyzed.

> The model of semantic concept lattice for data mining of
microblogs has been proposed in this work.

This dataset includes about 1.6M tokens.

19



» The size of the matrix C: 8909 words, 71K sentences
» Word embedding dimension: 50

> Word similarity is calculated by the cosine value between two
word vectors

natural embeddings
processing word
language contextualized
understanding glove
nlu sense
fundamental embedding
nlg vectors
vision disambiguation

sign analogy

20



Re-weighting: Motivation

Word frequency in the descreasing order

200000 A

150000

100000

50000 4

o

D 100 200 300 400 500 600 700 00

Top words: the, and, to, was, it

21



Re-weighting: TF-IDF

> Term frequency tf, 4: the number of the word w in the document

d
tfw,d =#w,d) (14)
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Re-weighting: TF-IDF

> Term frequency tf, 4: the number of the word w in the document

d
tfw,d =#w,d) (14)

> Document frequency df,: the number of documents that the
word w occurs in

> Inverse document frequency

. N
ldfw = 10g10 E (15)
w

where N is the total number of documents
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Re-weighting: TF-IDF

> Term frequency tf, 4: the number of the word w in the document

d
tfw,d =#w,d) (14)

> Document frequency df,: the number of documents that the
word w occurs in

> Inverse document frequency

. N
ldfw = 10g10 E (15)
w

where N is the total number of documents

» TE-IDF weighted value: for word w in document 4, the
corresponding value in the matrix C is

Cw,d = tfw,d -1dfy, (16)

22



Re-weighting: TF-IDF

>

Term frequency tf, 4: the number of the word w in the document

d
tfw,d =#w,d) (14)

Document frequency df;,: the number of documents that the
word w occurs in

Inverse document frequency

. N
ldfw = 10g10 E (15)
w

where N is the total number of documents

TF-IDF weighted value: for word w in document d, the
corresponding value in the matrix C is

Cw,d = tfw,d -1dfy, (16)

Factorize the weighted matrix using SVD

22



Context Window Size

Distributional hypothesis

Words that occur in the similar contexts tend to have similar

meanings
Documents
Word |1y 374 5 6 7 8
w1 o 1 0 0 0 O 0 O
wWa o 0 1 0 0 3 0 O
w3 1 0 0 2 0 O 5 0
Wy 3 0 0 1.1 0 2 0
ws o 1 3 0 1 2 1 0
We 1 2 0 0 0 O 1 O
wy 0O 1 0 1 0 1 0 1
wg o 0 0o 0 o0 7 0 O

Are w; and w; similar to each other, when they appear in the same
documents but far away from each other?



Context Window Size (ll)

Just under a week ago, Apple released a supplemental update to macOS
Catalina with various bug fixes and performance improvements. Now, Apple has
made a revised version of that same supplemental update available to users.

On its developer website, Apple says that a new version of the macOS Catalina
supplemental update has been released today. If you installed the original
supplemental update released last week, you might not even receive today's
revised version with Apple focusing on people who hadn't yet installed the initial
supplemental update.

The release notes for today’s update, build 19A603, are exactly the same as last

week's:

e Improves installation reliability of macOS Catalina on Macs with low disk
space

o Fixes an issue that prevented Setup Assistant from completing during
some installations

e Resolves an issue that prevents accepting iCloud Terms and Conditions
when multiple iCloud accounts are logged in

o Improves the reliability of saving Game Center data when playing Apple
Arcade games offline

The revised version of the macOS Catalina supplemental update likely includes

very minor changes and fixes. Apple is also currently beta testing macOS
Catalina 10.15.1, which may have provided our first look at the forthcoming 16-

inch MacBook Pro.




The Skip-gram Model




The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word w; to predict its
surrounding words w;;

Input projection  output

R

w(t-1)

w(t+1)

N we2)

[Mikolov et al., 2013a]



The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word w; to predict its
surrounding words w;;

Input projection  output

4 w(t-2)

w(t-1)

w(t+1)

-
N we2)

In probabilistic form, we need

P(wyyi | wy) =? (17)

[Mikolov et al., 2013a] 26



Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

exp(u,, vw,)

P(w+i | wy; 0) =
Z Zw’e"lf exp(u;’;fvwf)

(18)

wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.

27
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exp(u,, vw,)
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wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.

> t=6,c=2
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the potential to predict its surrounding words

exp(u,, vw,)

Zw’e"lf exp(u;’;fvwf)

P(wiyi | wi; 0) = (18)

wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.

> t=6,c=2

> Usually, larger window size c gives better quality of word
representations, but it also causes large computational
complexity.
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Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

exp(u,, vw,)

(18)
Zw’e"lf exp(u;’;fvwf)

P(wiyi | wi; 0) =

wherei € {—-c,...,—1,1,...,c} and ¢ is the window size.

> t=6,c=2

» Usually, larger window size c gives better quality of word
representations, but it also causes large computational
complexity.

» Unlike LSA, the skip-gram model always considers local context.

27



Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):
exp(uty,, Vw,)

Zw’EW eXp(u;ll—;/th)

The definition in equation 19 requires two sets of parameters for the

p(wiyi | wi; 0) = (19)

same vocabulary

> v, word vector (as input)
> u,: context vector (as output)

28
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Why we need two vectors for a word?



Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

exp(utg,, Vw,)

Zw’€°7/ eXP(”;/th)

The definition in equation 19 requires two sets of parameters for the

p(wiyi | wi; 0) = (19)

same vocabulary

> v, word vector (as input)

> u,: context vector (as output)
Quiz
Why we need two vectors for a word? Assume we only use one set
of the parameter {v}
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Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

exp(utg,, Vw,)

Zw’€°7/ eXP(”;/th)

The definition in equation 19 requires two sets of parameters for the

p(wiyi | wi; 0) = (19)

same vocabulary

> v, word vector (as input)

> u,: context vector (as output)
Quiz
Why we need two vectors for a word? Assume we only use one set
of the parameter {v}

exp(vy,, Vw,)

Zwew eXp(U;EJ,’Uwf)

p(wesi | we; 0) = (20)

A trivial solution that maximize the (log-)probability is v,,;, = vw,
which means all words will have the exactly same embedding. 28



Objective Function

The objective function of a skip-gram model is defined as

T
3D togp(wilw) (21)

t=1 —c<i<c;i#0
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The objective function of a skip-gram model is defined as

T
3D togp(wilw) (21)

t=1 —c<i<c;i#0
Each log probability is defined as

exp(itg,, Vw,)

2wer exp(uzTU,th)

logp(wiyi | wy) = log
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Objective Function

The objective function of a skip-gram model is defined as

T
3D togp(wilw) (21)

t=1 —c<i<c;i#0
Each log probability is defined as

exp(u;[,m Vw,)

2wer exp(uzl—]’th)
T

w,,; 0wy — 10g Z exp(u), vy,

w' eV

log p(wysi | wy) log

u

29



Objective Function

The objective function of a skip-gram model is defined as

T
%Z Z log p(w+i | wy) (21)

t=1 —c<i<c;i#0
Each log probability is defined as

exp(u;[,m Vw,)

2wer exp(uzl—]’th)
T

.
Uy, Vw, — log Z exp (U, vw,)

w' eV

log

log p(wysi | wy)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.

29



Negative Sampling

Review what have discussed so far

» The ultimate goal is learning word representations instead of a
classifier

» The normalization of prediction probability is computationally
expensive

30



Negative Sampling

Review what have discussed so far

» The ultimate goal is learning word representations instead of a
classifier
» The normalization of prediction probability is computationally
expensive
To reduce the computational complexity, we can replace
log p(wt+i | we) = u;—;mvw,‘ —log Z exp(”;rth)

w' eV

with the following function as objective

k
log a(u;,mth) - Z log a(ul,th)|w,~pn(w) (22)
i=1
where k is the number of negative samples and o(-) is the Sigmoid

function (the one used for binary classification in lecture 02)
30



Basic Training Procedure

Example witht =6,i=1,and k =3

... finding a better word representation ...

We w7  negative samples
better word larger
cause

window

31



Basic Training Procedure

Example witht =6,i=1,and k =3

... finding a better word representation ...

We w7  negative samples
better word larger
cause
window

For a given word w; and i

1. Treat its neighboring context word w;; as positive example

2. Randomly sample k other words from the vocab as negative
examples

3. Optimize Equation 22 to update both v. and u.

31



Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

k

log o(u;r,,m V) — Z log o(ul,th)|w,~pn(w) (23)
i=1

32



Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

k

log o(u;r,,m V) — Z log o(ul,th)|w,~pn(w) (23)
i=1

> The size of negative samples k

> 5 < k < 20 works better for small datasets
> 2 < k < 5is enough for large datasets
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Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

k

log o(u;r,,m V) — Z log o(ul,th)|w,~pn(w) (23)
i=1

> The size of negative samples k

> 5 < k < 20 works better for small datasets
> 2 < k < 5is enough for large datasets

> Noisy distribution p,(w)

> pu(w) o unigram—distribution(w)%

32



> Context window size: 3

» Word embedding dimension: 50
» Epochs of training: 3
natural embeddings
processing contextualized
nlp embedding
nl representations
language vectors
understanding elmo
nlu static
nlg word
fundamental polyglot

33



Word Embeddings: GloVe




Glove

The motivation of GloVe [?] is to find a balance between the methods
based on

> global matrix factorization (e.g., LSA) and

> local context windows (e.g., Skip-gram).

35



Word-to-word Co-occurrence Matrix

> Define X with X; ; denotes the frequency of word j appears in the
context of word i

X=| Xi1 ... Xij1 Xij Xijy1 ... Xiy (24)

Each row corresponds one target word, each column
corresponds one context word.

36



Word-to-word Co-occurrence Matrix

> Define X with X; ; denotes the frequency of word j appears in the
context of word i

X=| Xi1 ... Xij1 Xij Xijy1 ... Xiy (24)

Each row corresponds one target word, each column
corresponds one context word.

> Empirical probability estimation of w; given w;
Xij
Qw; | w;) = el (25)

where X; = Z]- Xi,j

36



Probability Estimation via Word Embeddings

Another way to estimate the probability of w; given w; is

exp(u] v

Dwrer exp(ul},vwi)

P(w; | wi) = (26)

with u#. and v. are two sets of parameters (embeddings) associated
with words, similar to the Skip-gram model.

37



The basic idea is to learn {v.} and {u.}, such that
Qwj | w;) =~ P(w; | w;) (27)

or
log Q(w; | w;) ~ log P(w; | w;) (28)

38



The basic idea is to learn {v.} and {u.}, such that
Qwj | w;) =~ P(w; | w;) (27)

or
log Q(w; | w;) ~ log P(w; | w;) (28)

More specific

log(X;j) — log(X;) ~ u;],vwi —log Z exp(u, vy, (29)

w eV

38



GloVe (Il)

Starting point:

log(X;;) — log(X;) ~ u;jvwi —log Z exp(u] vy, (30)

w' eV

39



GloVe (Il)

Starting point:

log(X;;) — log(X;) ~ u;jvwi —log Z exp(u] vy, (30)

w' eV

In order to find the best approximation, we could formulate this as a
optimization problem

2
{log(Xl-j) —log(X;) - ul,jvw,. + log Z exp(u;,vw,.)} (31)

w eV
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GloVe (Il)

Starting point:

log(X;;) — log(X;) ~ u;jvwi —log Z exp(u] vy, (30)

w' eV

In order to find the best approximation, we could formulate this as a
optimization problem

2
{log(Xl-j) —log(X;) - ul,jvw,. + log Z exp(u;,vw,.)} (31)
w' eV
It can be further simplified as (Eq. 16 in [?])

(log(;) ~ ] v} 2)

if we only consider the unnormalized version of P and Q.

39



Objective Function

The overall objective function is defined as

D 2 0g(Xy)) - uf vi,)? (33)

w;  w;
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Objective Function

The overall objective function is defined as

D 2 0g(Xy)) - uf vi,)? (33)

w;  w;

The objective function is further refined by discouraging
high-frequency words as

D D fXiplog(Xij) — uf, v, (34)

wi w]'
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Down-weighting

Weighting function:

()" if x < Xmax

flx)= { o (35)

otherwise

where a = 3/4.

10
08
06 ¢
fXi) |
04
02

0.0 L . L L 1 XZ]

xmax
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Skip-gram as Implicit Matrix Factorization

[?] shows that skip-gram with negative sampling can be viewed as an
implicit matrix factorization over a word-word co-occurrence matrix
weighted by point-wise mutual information (PMI).

u;jvwi ~ PMI(w;, w;) - log k (36)

where PMI(w;, w;) is the mutual information of P(w;) and P(w;) with
a given window size and k is the number of negative samples.
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Skip-gram as Implicit Matrix Factorization (Il)

The definition of PMI(w;, w ]-) is

PMI(w,,w])—logP((l;P( i)—logP(w,lw) log P(w;)  (37)
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Skip-gram as Implicit Matrix Factorization (II)

The definition of PMI(w;, w ]-) is

PMI(w5, 1) = log — 22D _ 100 p(aw: | w5) - log Py (37)
1y Wy g P(wl)P(w]) g ] 1 g ] 7
Combine 36 and 37, we have
P(w;, wj)
~log —————— -
P(w;)P(wj)
=log P(w; | w;) —log P(w;) —logk
= log(Xj) — log(X;) — log(X;) +log D —log k

T
Uy, Vu,

log k
(38)

Similar to Eq. 8in [?].
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Essentially,

A unified framework

u;jvwi ~ log(Xjj) + g(X) (39)

44



Essentially,

A unified framework

u;jvwi ~ log(Xjj) + g(X) (39)

Which one matters?

> g(X), or
> Implicit/explicit optimization, or

> Other tricks (down-sampling, hyper-parameters, etc.)
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Evaluation Methods



Overview

» Intrinsic Evaluation®
> Word similarity
> Word analogy
»> Word intrusion

» Extrinsic Evaluation

> Evaluating based on a downstream task, such as text classification

http://bionlp-www.utu.fi/wv_demo/
46


http://bionlp-www.utu.fi/wv_demo/

Word Similarity

Let w; and w; be two words, and vy, and vy, ; be the corresponding
word embeddings, word similarity can be obtained by computing
their cosine similarity between v, and vy, ; as

<vw,~/ vw,'>

Mvwllz - llowll2

(40)

c08(va,, D)
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Word; | Wordy | Similarity score [0,10]
love sex 6.77
stock jaguar 0.92
money cash 9.15
development | issue 3.97
lad brother 4.46

Figure: Sample word pairs along with their human similarity judgment from
WS-353 [Faruqui et al., 2016].
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Available word similarity datasets

Dataset Word pairs  Reference

RG 65 Rubenstein and Goodenough (1965)
MC 30 Miller and Charles (1991)
‘WS-353 353 Finkelstein et al. (2002)
YP-130 130  Yang and Powers (2006)
MTurk-287 287  Radinsky et al. (2011)
MTurk-771 771  Halawi etal. (2012)
MEN 3000 Bruni et al. (2012)

RW 2034  Luong et al. (2013)
Verb 144  Bakeretal. (2014)
SimLex 999 Hilletal. (2014)

Figure: Word similarity datasets [Faruqui et al., 2016].
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Word Similarity

the basis for other intrinsic evaluations
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Word Analogy

> It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

» The basic setup

W, Wy = we :?

where w, , . are words and w,, w; are related under a certain
linguistic relation
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Word Analogy

> It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

» The basic setup
W, Wy = we :?

where w, , . are words and w,, w; are related under a certain
linguistic relation
> Example
> Semantic: love : like = hate :?
> Syntactic: quick : quickly = happy :?
> Gender: king : man = queen :?
» Others: Beijing : China = Paris :?
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Word Analogy

> It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

» The basic setup
W, Wy = we :?
where w, , . are words and w,, w; are related under a certain
linguistic relation

> Example

»> Semantic: love : like = hate :?

> Syntactic: quick : quickly = happy :?
> Gender: king : man = queen :?

» Others: Beijing : China = Paris :?

> Calculation: (vy, — V) (Vw, — Vaw,)
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Word Analogy: Examples

2 T T T T T T
China+
*Beijing
15 Russia- i
Japan«
»Moscow
i »Tokyo
Turkey- »Ankara Y
05 -
Poland+
o Germany-
France "Warsaw
s Berlin
-05 Italy< Paris
Greece: » —Athens
-1} Spain Rome
15 Ponuéal iiSb;\]/Iadrid
2 | | | 1 1 |
-2 -1.5 -0.5 0 0.5 1 15
Figure: Word analogy examples.
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Word Intrusion

From [Faruqui et al., 2014]

naval, industrial, technological, marine, identity

> constructed from word embeddings

» evaluated by human annotators
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Extrinsic Evaluation

> Implicit assumption: there is a consistent, global ranking of word
embedding quality, and that higher quality embeddings will
necessarily improve results on any downstream task.

> Unfortunately, this assumption does not hold in
general [Schnabel et al., 2015].
> Examples

> empirical results show that it may not be able give much help to
syntactic parsing [Andreas and Klein, 2014]

> adding surface-form features always help
([Ji and Eisenstein, 2014a] and many other works)
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Further Discussion



Gender Bias

Uman — Uwoman ~  Ucomputer programmer — Uhomemaker (41)
Ofather — Umother ~  Udoctor — Unurse (42)
[Bolukbasi et al., 2016]
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Example

tote reading recobrds clip commit game

browsing sites seconds slow arrival tactical biased

crafts credits d )
trimester  tanning  US€T  parts droP reel firepower
ultrasound hoped command

1
. . housing €quUsed jj| ¢ inmage
mot.ielmg beautiful 4jis  self gel |ooks zeal builderg drafted
sewing dress yonce steals effect trips  pyilliant )
) flit  nucfear yard genius
pageant €arrings divorce  firms " cocky journeyman

salon MU tearful cow old ;gz(r':g t{ﬁs guru buddy
sassy b pearls i i ol rule
y breasts vases iv  regiondl firmly buddies burly
homemaker dancer | folks fWiend
amb, " - Puest. . mate .. . . beard . _ . .

[ LI o - | g mmmmp- -
MOy ™~ witch ~witches dads bo# cousin boyhood  he

cha
actresses gals fiance wives son P lad
queen girlfriends girifriend 1 sons brothers
5|sters grandmother wife dadc{y nephew
ladies daughters fiancee
' okay

[Bolukbasi et al., 2016]
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» Word embeddings from either Wordzvec or GloVe encode not
just semantic information
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» Word embeddings from either Wordzvec or GloVe encode not
just semantic information

> In some applications, we want to emphasize one particular
aspect of linguistic information

> Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
» Discourse information [Ji and Eisenstein, 2014b]
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» Word embeddings from either Wordzvec or GloVe encode not
just semantic information

> In some applications, we want to emphasize one particular
aspect of linguistic information

> Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
» Discourse information [Ji and Eisenstein, 2014b]

» Solutions

> fine-tuning word embeddings with certain constraints
[Faruqui et al., 2014, Mrksic et al., 2016]
> learning from supervision information [Ji and Eisenstein, 2014b]
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Retrofitting

Retrofitting with WordNet [Miller, 1995]

> QO = (V, E)be a semantic graph over words, where V is the node
set with each element as a word, and E is the edge set with each

edge representing a semantic relation between two words.
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Retrofitting (Il)

> The goal is to learn word embeddings {%} such that %; and %; are
close enough if (i, ) € E.

> In addition, {7} should also satisfy the constraint from original
word embeddings, such that ¥; and ¥; are close enough for every

word in 7.
~ |7
WV =Y |alloi-wll2+ Y pille - 51 (43)
i=1 (i,j)eE
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Counter-fitting

Inject antonymy and synonymy constraints into word embedding
space to improve the embeddings’ capability for judging semantic

similarity

east

expensive British
west pricey American
north cheaper Australian
Before south costly Britain
southeast overpriced European
northeast  inexpensive England
eastward costly Brits
eastern pricy London
After easterly overpriced BBC
- pricey UK
- afford Britain

Table 1: Nearest neighbours for target words using GloVe
vectors before and after counter-fitting

[Mrksic et al., 2016]
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Learning from Supervision Signal

Conjunction
Contrast

g T hould
Precedence o W
Result wilb—y, : \w[u
Succession before— could
Modal verb after

Reporting verb

when—-e

after—"

e+ toomp

Figure: (Left) Word embeddings learned with supervision signal; (Right)
Unsupervised word embeddings.
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