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Distributional Hypothesis



Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a splendid time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]
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Another Example

Consider the following examples, although we do not know what
exactly words are missing, to some extent we can still guess the
meanings of those missing words

▶ is delicious sauteed with garlic.

▶ is superb over rice.

▶ . . . leaves with salty sauces . . .

[Jurafsky and Martin, 2019]
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Latent Semantic Analysis



Word-document Matrix

For a corpus of 𝑑 documents over a vocabulary V, the cooccurence
matrix is defined as C,

𝑪 = [𝑐𝑖 𝑗] ∈ ℝ𝑣×𝑑

=


𝑐1,1 . . . 𝑐1,𝑑
...

. . .
...

𝑐𝑣,1 . . . 𝑐𝑣,𝑑

 (1)

where

▶ 𝑣 = |V| is the size of vocab
▶ 𝑑 is the number of the documents
▶ 𝑐𝑖 𝑗 is the count of word 𝑖 in document 𝑗
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Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)
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Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context,

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩
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The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
1𝒘2

= 0

▶ 𝒘T
2𝒘3

= 0

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors
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Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors

(b) should contain similar information as the original sparse vectors

Matrix decomposition on C will help us to identify low-dimensional
representations
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Singular Value Decomposition (SVD)

Using SVD, the word-document matrix 𝑪 can be decomposed into a
multiplication of three matrices

𝑪 = 𝑼0 · 𝚺0 · 𝑽 T
0 . (3)

▶ 𝑼0 ∈ ℝ𝑣×𝑣 is an orthonormal matrix
▶ 𝑽0 ∈ ℝ𝑑×𝑑 is an orthonormal matrix
▶ 𝚺0 ∈ ℝ𝑣×𝑑 is a diagonal matrix — each component on the

diagonal is called a singular value
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SVD: Example

Given a matrix 𝑪 as

𝑪 =

[
1.0 2.0
3.0 4.0

]
(4)

The decomposition is

𝑼 =

[
−0.40 −0.91
−0.91 0.40

]
𝚺 =

[
5.46 0

0 0.37

]
𝑽 T =

[
−0.58 −0.82
0.82 −0.58

]
(5)

To obtain a low-dimensional approximation of 𝑪, we can remove one
of the singular values. But what matters is which one we are going to
remove?

12



SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.
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SVD: Example (Cont.)

Given a matrix 𝑪 as

𝑪 =


1.0 2.0
3.0 4.0
5.0 6.0

 (6)

The decomposition is

𝑼 =


0.23 −0.88 0.41
0.52 −0.24 −0.82
0.82 0.40 0.41

 (7)

𝚺 =


9.53 0

0 0.51
0 0

 (8)

𝑽T =

[
0.62 0.78
0.78 −0.62

]
(9)

The maximum number of non-zero singular values is min(𝑣, 𝑑),
where 𝑣 and 𝑑 are the numbers of rows and columns respectively.
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SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸               ︷︷               ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸               ︷︷               ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸               ︷︷               ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.
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Singular Values

A real example: 𝑪 with about 9K words and 71.8K sentences is
constructed from a dataset used in the demo code. The following plot
shows the first/top 500 singular values in the decreasing order.

With the index → 9𝐾, the singular values are close to 0.
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SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸               ︷︷               ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸               ︷︷               ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸               ︷︷               ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.
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Lower-dimensional Word Representations

Given
𝑪 ≈ 𝑼 · 𝚺 · 𝑽 T (12)

to construct low-dimensional word representation, we can multiply 𝑽
on both side of equation 12 and then have

𝑾 = 𝑼 · 𝚺 ≈ 𝑪 · 𝑽 ∈ R𝑣×𝑘 (13)
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Dataset

We collected the dataset from the abstracts of NLP papers from the
arXiv website. Some example sentences from the dataset

▶ The author uses the entropy of the ideal Bose-Einstein

gas to minimize losses in computer-oriented languages.

▶ In this paper, current dependency based treebanks are

introduced and analyzed.

▶ The model of semantic concept lattice for data mining of

microblogs has been proposed in this work.

This dataset includes about 1.6M tokens.

19



Results

▶ The size of the matrix 𝑪: 8909 words, 71K sentences
▶ Word embedding dimension: 50
▶ Word similarity is calculated by the cosine value between two

word vectors

natural embeddings

processing word

language contextualized

understanding glove

nlu sense

fundamental embedding

nlg vectors

vision disambiguation

sign analogy
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Re-weighting: Motivation

Word frequency in the descreasing order

Top words: the, and, to, was, it
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Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (14)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(15)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (16)

▶ Factorize the weighted matrix using SVD
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Context Window Size

Distributional hypothesis
Words that occur in the similar contexts tend to have similar
meanings

Are 𝑤𝑖 and 𝑤 𝑗 similar to each other, when they appear in the same
documents but far away from each other?

23



Context Window Size (II)

24



The Skip-gram Model



The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word 𝑤𝑡 to predict its
surrounding words 𝑤𝑡+𝑖

In probabilistic form, we need

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡) =? (17)

[Mikolov et al., 2013a] 26
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Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )
(18)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2
▶ Usually, larger window size 𝑐 gives better quality of word

representations, but it also causes large computational
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Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )
(19)

The definition in equation 19 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word?

Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡 )
(20)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding.
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Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (21)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 )∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡 )

= 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡 )

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.
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Negative Sampling

Review what have discussed so far

▶ The ultimate goal is learning word representations instead of a
classifier

▶ The normalization of prediction probability is computationally
expensive

To reduce the computational complexity, we can replace

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡 )

with the following function as objective

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (22)

where 𝑘 is the number of negative samples and 𝜎(·) is the Sigmoid
function (the one used for binary classification in lecture 02)
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Basic Training Procedure

Example with 𝑡 = 6, 𝑖 = 1, and 𝑘 = 3

. . . finding a better word representation . . .

𝑤6 𝑤7 negative samples

better word larger
cause

window

For a given word 𝑤𝑡 and 𝑖

1. Treat its neighboring context word 𝑤𝑡+𝑖 as positive example
2. Randomly sample 𝑘 other words from the vocab as negative

examples
3. Optimize Equation 22 to update both 𝒗· and 𝒖·
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Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32



Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32



Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 ) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡 )

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32



Results

▶ Context window size: 3
▶ Word embedding dimension: 50
▶ Epochs of training: 3

natural embeddings

processing contextualized

nlp embedding

nl representations

language vectors

understanding elmo

nlu static

nlg word

fundamental polyglot
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Word Embeddings: GloVe



Glove

The motivation of GloVe [?] is to find a balance between the methods
based on

▶ global matrix factorization (e.g., LSA) and
▶ local context windows (e.g., Skip-gram).
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Word-to-word Co-occurrence Matrix

▶ Define X with 𝑋𝑖 , 𝑗 denotes the frequency of word 𝑗 appears in the
context of word 𝑖

X =


. . . . . . . . . . . . . . . . . . . . .

𝑋𝑖 ,1 . . . 𝑋𝑖 , 𝑗−1 𝑋𝑖 , 𝑗 𝑋𝑖 , 𝑗+1 . . . 𝑋𝑖 ,𝑉

. . . . . . . . . . . . . . . . . . . . .

 (24)

Each row corresponds one target word, each column
corresponds one context word.

▶ Empirical probability estimation of 𝑤 𝑗 given 𝑤𝑖

𝑄(𝑤 𝑗 | 𝑤𝑖) =
𝑋𝑖 𝑗

𝑋𝑖
(25)

where 𝑋𝑖 =
∑
𝑗 𝑋𝑖 , 𝑗
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Probability Estimation via Word Embeddings

Another way to estimate the probability of 𝑤 𝑗 given 𝑤𝑖 is

𝑃(𝑤 𝑗 | 𝑤𝑖) =
exp(𝒖T

𝑤 𝑗
𝒗𝑤𝑖 )∑

𝑤′∈Vexp(𝒖T
𝑤′𝒗𝑤𝑖 )

(26)

with 𝒖· and 𝒗· are two sets of parameters (embeddings) associated
with words, similar to the Skip-gram model.
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GloVe

The basic idea is to learn {𝒗·} and {𝒖·}, such that

𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ 𝑃(𝑤 𝑗 | 𝑤𝑖) (27)

or
log𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ log𝑃(𝑤 𝑗 | 𝑤𝑖) (28)

More specific

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 ) (29)
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GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 ) (30)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 )

}2
(31)

It can be further simplified as (Eq. 16 in [?]){
log(𝑋𝑖 𝑗) − 𝒖T

𝑤 𝑗
𝒗𝑤𝑖

}2
(32)

if we only consider the unnormalized version of 𝑃 and 𝑄.
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if we only consider the unnormalized version of 𝑃 and 𝑄.
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GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 ) (30)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖 )

}2
(31)

It can be further simplified as (Eq. 16 in [?]){
log(𝑋𝑖 𝑗) − 𝒖T

𝑤 𝑗
𝒗𝑤𝑖

}2
(32)

if we only consider the unnormalized version of 𝑃 and 𝑄.
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Objective Function

The overall objective function is defined as∑
𝑤𝑖

∑
𝑤 𝑗

(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 )2 (33)

The objective function is further refined by discouraging
high-frequency words as∑

𝑤𝑖

∑
𝑤 𝑗

𝑓 (𝑋𝑖 𝑗)(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 )2 (34)
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Down-weighting

Weighting function:

𝑓 (𝑥) =
{
( 𝑥
𝑥max

)𝑎 if 𝑥 < 𝑥max

1 otherwise
(35)

where 𝑎 = 3/4.
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Skip-gram as Implicit Matrix Factorization

[?] shows that skip-gram with negative sampling can be viewed as an
implicit matrix factorization over a word-word co-occurrence matrix
weighted by point-wise mutual information (PMI).

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ PMI(𝑤𝑖 , 𝑤 𝑗) − log 𝑘 (36)

where PMI(𝑤𝑖 , 𝑤 𝑗) is the mutual information of 𝑃(𝑤𝑖) and 𝑃(𝑤 𝑗) with
a given window size and 𝑘 is the number of negative samples.
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Skip-gram as Implicit Matrix Factorization (II)

The definition of PMI(𝑤𝑖 , 𝑤 𝑗) is

PMI(𝑤𝑖 , 𝑤 𝑗) = log
𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) (37)

Combine 36 and 37, we have

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log

𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

− log 𝑘

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) − log 𝑘
= log(𝑋𝑖 𝑗) − log(𝑋𝑖) − log(𝑋𝑗) + log𝐷 − log 𝑘

(38)

Similar to Eq. 8 in [?].
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Essentially,

A unified framework

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log(𝑋𝑖 𝑗) + 𝑔(X) (39)

Which one matters?

▶ 𝑔(X), or
▶ Implicit/explicit optimization, or
▶ Other tricks (down-sampling, hyper-parameters, etc.)
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Evaluation Methods



Overview

▶ Intrinsic Evaluation1

▶ Word similarity
▶ Word analogy
▶ Word intrusion

▶ Extrinsic Evaluation
▶ Evaluating based on a downstream task, such as text classification

1http://bionlp-www.utu.fi/wv_demo/
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Word Similarity

Let 𝑤𝑖 and 𝑤 𝑗 be two words, and 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 be the corresponding
word embeddings, word similarity can be obtained by computing
their cosine similarity between 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 as

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥2 · ∥𝒗𝑤 𝑗∥2
(40)
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Examples

Figure: Sample word pairs along with their human similarity judgment from
WS-353 [Faruqui et al., 2016].
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Datasets

Available word similarity datasets

Figure: Word similarity datasets [Faruqui et al., 2016].
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Word Similarity

the basis for other intrinsic evaluations
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Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏 )T(𝒗𝑤𝑐 − 𝒗𝑤𝑑 )
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Word Analogy: Examples

Figure: Word analogy examples.
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Word Intrusion

From [Faruqui et al., 2014]

naval, industrial, technological, marine, identity

▶ constructed from word embeddings
▶ evaluated by human annotators
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Extrinsic Evaluation

▶ Implicit assumption: there is a consistent, global ranking of word
embedding quality, and that higher quality embeddings will
necessarily improve results on any downstream task.

▶ Unfortunately, this assumption does not hold in
general [Schnabel et al., 2015].

▶ Examples
▶ empirical results show that it may not be able give much help to

syntactic parsing [Andreas and Klein, 2014]
▶ adding surface-form features always help

([Ji and Eisenstein, 2014a] and many other works)
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Further Discussion



Gender Bias

𝒗man − 𝒗woman ≈ 𝒗computer programmer − 𝒗homemaker (41)
𝒗father − 𝒗mother ≈ 𝒗doctor − 𝒗nurse (42)

[Bolukbasi et al., 2016]
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Example

[Bolukbasi et al., 2016]
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Problem

▶ Word embeddings from either Word2vec or GloVe encode not
just semantic information

▶ In some applications, we want to emphasize one particular
aspect of linguistic information
▶ Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
▶ Discourse information [Ji and Eisenstein, 2014b]

▶ Solutions
▶ fine-tuning word embeddings with certain constraints

[Faruqui et al., 2014, Mrksic et al., 2016]
▶ learning from supervision information [Ji and Eisenstein, 2014b]
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Retrofitting

Retrofitting with WordNet [Miller, 1995]

▶ Ω = (𝑉, 𝐸) be a semantic graph over words, where 𝑉 is the node
set with each element as a word, and 𝐸 is the edge set with each
edge representing a semantic relation between two words.
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Retrofitting (II)

▶ The goal is to learn word embeddings {𝒗̃} such that 𝒗̃𝑖 and 𝒗̃ 𝑗 are
close enough if (𝑖 , 𝑗) ∈ 𝐸.

▶ In addition, {𝒗̃} should also satisfy the constraint from original
word embeddings, such that 𝑣̃𝑖 and 𝒗̃𝑖 are close enough for every
word in V.

Ψ(Ṽ) =
|V|∑
𝑖=1

[
𝛼𝑖∥𝒗𝑖 − 𝒗̃𝑖∥2 +

∑
(𝑖 , 𝑗)∈𝐸

𝛽𝑖 𝑗∥𝒗̃𝑖 − 𝒗̃ 𝑗∥2
]

(43)
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Counter-fitting

Inject antonymy and synonymy constraints into word embedding
space to improve the embeddings’ capability for judging semantic
similarity

[Mrksic et al., 2016] 61



Learning from Supervision Signal

Figure: (Left) Word embeddings learned with supervision signal; (Right)
Unsupervised word embeddings.
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