
CS 6501 Natural Language
Processing
Word Embeddings

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. Distributional Hypothesis

2. Latent Semantic Analysis

3. The Skip-gram Model

4. Word Embeddings: GloVe

5. Evaluation Methods

6. Further Discussion

1

Distributional Hypothesis

Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a splendid time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]

3

Distributional Hypothesis

The starting point of building word semantic representations:

Distributional hypothesis
Words that occur in the similar contexts tend to have

similar meanings

Examples

▶ to have a splendid time in Rome

▶ to have a wonderful time in Rome

[Jurafsky and Martin, 2019, Chap 06]

3

Another Example

Consider the following examples, although we do not know what
exactly words are missing, to some extent we can still guess the
meanings of those missing words

▶ is delicious sauteed with garlic.

▶ is superb over rice.

▶ . . . leaves with salty sauces . . .

[Jurafsky and Martin, 2019]

4

Latent Semantic Analysis

Word-document Matrix

For a corpus of 𝑑 documents over a vocabulary V, the cooccurence
matrix is defined as C,

𝑪 = [𝑐𝑖 𝑗] ∈ ℝ𝑣×𝑑

=


𝑐1,1 . . . 𝑐1,𝑑
...

. . .
...

𝑐𝑣,1 . . . 𝑐𝑣,𝑑

 (1)

where

▶ 𝑣 = |V| is the size of vocab
▶ 𝑑 is the number of the documents
▶ 𝑐𝑖 𝑗 is the count of word 𝑖 in document 𝑗

6

Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)

7

Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document)

7

Word-document Matrix

Consider the following toy example, where we have eight documents
and a vocabulary with eight words

Two views of this matrix

▶ Each column 𝒅𝑖 is a document (BoW) representation (same as the
one used in logistic regression)

▶ Each row 𝒘𝑘 is a word representation (by considering a context is a
whole document) 7

Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context,

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩

8

Word Similarity

Now, with the numeric representations of words, we can calculate
word similarity numerically

▶ We can use row vectors {𝒘𝑘} to represent words by considering
each document as a context,

▶ A typical way of measuring word similarity is using cosine
values, for two word representations 𝒘𝑘 and 𝒘𝑘′ , we have

cos-sim(𝒘𝑘 ,𝒘𝑘′) =
𝒘T
𝑘
𝒘𝑘′

∥𝒘𝑘∥2 · ∥𝒘𝑘′∥2
(2)

where
▶ 𝒘T

𝑘
𝒘𝑘′ =

∑
𝑖=1 𝑤𝑘,𝑖𝑤𝑘′ ,𝑖

▶ ∥𝒘𝑘∥2 =
√
⟨𝒘𝑘 ,𝒘𝑘⟩

8

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
1𝒘2

= 0

▶ 𝒘T
2𝒘3

= 0

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

9

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
1𝒘2= 0

▶ 𝒘T
2𝒘3= 0

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

9

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
1𝒘2= 0

▶ 𝒘T
2𝒘3= 0

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors

9

The Sparsity Issue in Representations

Compute the dot product of the following two pairs

▶ 𝒘T
1𝒘2= 0

▶ 𝒘T
2𝒘3= 0

▶ The sparsity issue will get even worse when we have a large
vocab, say, 10K or 50K words

▶ This motivates us to find a way of compressing these sparse raw
vectors 9

Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors

(b) should contain similar information as the original sparse vectors

Matrix decomposition on C will help us to identify low-dimensional
representations

10

Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors
(b) should contain similar information as the original sparse vectors

Matrix decomposition on C will help us to identify low-dimensional
representations

10

Two Constraints

New numeric representations of words

(a) should have low-dimensional dense vectors
(b) should contain similar information as the original sparse vectors

Matrix decomposition on C will help us to identify low-dimensional
representations

10

Singular Value Decomposition (SVD)

Using SVD, the word-document matrix 𝑪 can be decomposed into a
multiplication of three matrices

𝑪 = 𝑼0 · 𝚺0 · 𝑽 T
0 . (3)

▶ 𝑼0 ∈ ℝ𝑣×𝑣 is an orthonormal matrix
▶ 𝑽0 ∈ ℝ𝑑×𝑑 is an orthonormal matrix
▶ 𝚺0 ∈ ℝ𝑣×𝑑 is a diagonal matrix — each component on the

diagonal is called a singular value

11

SVD: Example

Given a matrix 𝑪 as

𝑪 =

[
1.0 2.0
3.0 4.0

]
(4)

The decomposition is

𝑼 =

[
−0.40 −0.91
−0.91 0.40

]
𝚺 =

[
5.46 0

0 0.37

]
𝑽 T =

[
−0.58 −0.82
0.82 −0.58

]
(5)

To obtain a low-dimensional approximation of 𝑪, we can remove one
of the singular values. But what matters is which one we are going to
remove?

12

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

13

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]

= 0.37 ·
[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

13

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]

▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

13

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]

Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

13

SVD for Low-dimensional Approximation

▶ Option 1: remove the first singular value

𝑪1 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

0 0
0 0.37

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 0.37 ·

[
−0.91
0.40

]
· [0.82 − 0.58] =

[
−0.28 0.20
0.12 −0.09

]
▶ Option 2: remove the second singular value

𝑪2 =

[
−0.40 −0.91
−0.91 0.40

]
·
[

5.46 0
0 0

]
·
[
−0.58 −0.82
0.82 −0.58

]
= 5.46 ·

[
−0.40
−0.91

]
· [−0.58 − 0.82] =

[
1.26 1.79
2.88 4.07

]
Therefore, ∥𝑪 − 𝑪1∥𝐹 > ∥𝑪 − 𝑪2∥𝐹 . In other words, removing the
smaller singular value creates a better low-dimensional
approximation.

13

SVD: Example (Cont.)

Given a matrix 𝑪 as

𝑪 =


1.0 2.0
3.0 4.0
5.0 6.0

 (6)

The decomposition is

𝑼 =


0.23 −0.88 0.41
0.52 −0.24 −0.82
0.82 0.40 0.41

 (7)

𝚺 =


9.53 0

0 0.51
0 0

 (8)

𝑽T =

[
0.62 0.78
0.78 −0.62

]
(9)

The maximum number of non-zero singular values is min(𝑣, 𝑑),
where 𝑣 and 𝑑 are the numbers of rows and columns respectively.

14

SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸ ︷︷ ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸ ︷︷ ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸ ︷︷ ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.

15

SVD in General Form

The full decomposition of matrix 𝑪

𝑪 =

 𝒖1 . . . 𝒖𝑣

︸ ︷︷ ︸
𝑼0

·

𝜎1

. . .

𝜎?

︸ ︷︷ ︸
𝚺0

·


𝒗1
...

𝒗𝑑

︸ ︷︷ ︸
𝑽T

0

(10)

As 𝑼0 and 𝑽0 are both orthonormal matrices, 𝚺0 is the only one that
reflects the “magnitude” of matrix 𝑪.

For a large-scale sparse matrix, the singular values in 𝚺0 often have
big differences.

15

Singular Values

A real example: 𝑪 with about 9K words and 71.8K sentences is
constructed from a dataset used in the demo code. The following plot
shows the first/top 500 singular values in the decreasing order.

With the index → 9𝐾, the singular values are close to 0.
16

SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸ ︷︷ ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸ ︷︷ ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸ ︷︷ ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.

17

SVD for Approximation

With SVD, we can approximate 𝑪 only keep the first 𝑘 singular values
in 𝚺0, as 𝚺

𝑪 ≈
 𝒖1 . . . 𝒖𝑘

︸ ︷︷ ︸
𝑼

·

𝜎1

. . .

𝜎𝑘

︸ ︷︷ ︸
𝚺

·


𝒗1
...

𝒗𝑘

︸ ︷︷ ︸
𝑽T

(11)

where 𝑼 ∈ ℝ𝑣×𝑘 , 𝑽 ∈ ℝ𝑑×𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 .

For the previous case, we can pick 𝑘 ∈ [200, 400] without worrying
about losing too much information.

17

Lower-dimensional Word Representations

Given
𝑪 ≈ 𝑼 · 𝚺 · 𝑽 T (12)

to construct low-dimensional word representation, we can multiply 𝑽
on both side of equation 12 and then have

𝑾 = 𝑼 · 𝚺 ≈ 𝑪 · 𝑽 ∈ R𝑣×𝑘 (13)

18

Dataset

We collected the dataset from the abstracts of NLP papers from the
arXiv website. Some example sentences from the dataset

▶ The author uses the entropy of the ideal Bose-Einstein

gas to minimize losses in computer-oriented languages.

▶ In this paper, current dependency based treebanks are

introduced and analyzed.

▶ The model of semantic concept lattice for data mining of

microblogs has been proposed in this work.

This dataset includes about 1.6M tokens.

19

Results

▶ The size of the matrix 𝑪: 8909 words, 71K sentences
▶ Word embedding dimension: 50
▶ Word similarity is calculated by the cosine value between two

word vectors

natural embeddings

processing word

language contextualized

understanding glove

nlu sense

fundamental embedding

nlg vectors

vision disambiguation

sign analogy

20

Re-weighting: Motivation

Word frequency in the descreasing order

Top words: the, and, to, was, it

21

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (14)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(15)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (16)

▶ Factorize the weighted matrix using SVD

22

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (14)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(15)

where 𝑁 is the total number of documents

▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the
corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (16)

▶ Factorize the weighted matrix using SVD

22

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (14)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(15)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (16)

▶ Factorize the weighted matrix using SVD

22

Re-weighting: TF-IDF

▶ Term frequency tf𝑤,𝑑: the number of the word 𝑤 in the document
𝑑

tf𝑤,𝑑 = #(𝑤, 𝑑) (14)

▶ Document frequency df𝑤 : the number of documents that the
word 𝑤 occurs in

▶ Inverse document frequency

idf𝑤 = log10
𝑁

df𝑤
(15)

where 𝑁 is the total number of documents
▶ TF-IDF weighted value: for word 𝑤 in document 𝑑, the

corresponding value in the matrix C is

𝑐𝑤,𝑑 = tf𝑤,𝑑 · idf𝑤 (16)

▶ Factorize the weighted matrix using SVD
22

Context Window Size

Distributional hypothesis
Words that occur in the similar contexts tend to have similar
meanings

Are 𝑤𝑖 and 𝑤 𝑗 similar to each other, when they appear in the same
documents but far away from each other?

23

Context Window Size (II)

24

The Skip-gram Model

The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word 𝑤𝑡 to predict its
surrounding words 𝑤𝑡+𝑖

In probabilistic form, we need

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡) =? (17)

[Mikolov et al., 2013a] 26

The Skip-gram Model

Instead of using matrix decomposition, a different strategy of
learning word embeddings is using a word 𝑤𝑡 to predict its
surrounding words 𝑤𝑡+𝑖

In probabilistic form, we need

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡) =? (17)

[Mikolov et al., 2013a] 26

Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(18)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2
▶ Usually, larger window size 𝑐 gives better quality of word

representations, but it also causes large computational
complexity.

▶ Unlike LSA, the skip-gram model always considers local context.

27

Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(18)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2

▶ Usually, larger window size 𝑐 gives better quality of word
representations, but it also causes large computational
complexity.

▶ Unlike LSA, the skip-gram model always considers local context.

27

Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(18)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2
▶ Usually, larger window size 𝑐 gives better quality of word

representations, but it also causes large computational
complexity.

▶ Unlike LSA, the skip-gram model always considers local context.

27

Skip-gram

One way of finding a better word representation is to make sure it has
the potential to predict its surrounding words

𝑃(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(18)

where 𝑖 ∈ {−𝑐, . . . ,−1, 1, . . . , 𝑐} and 𝑐 is the window size.

▶ 𝑡 = 6, 𝑐 = 2
▶ Usually, larger window size 𝑐 gives better quality of word

representations, but it also causes large computational
complexity.

▶ Unlike LSA, the skip-gram model always considers local context.

27

Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(19)

The definition in equation 19 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word?

Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡)
(20)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding.

28

Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(19)

The definition in equation 19 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word?

Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡)
(20)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding.

28

Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(19)

The definition in equation 19 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word? Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡)
(20)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding.

28

Word Vectors vs. Context Vectors

Distinguish a word as target (input) and context (output):

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
(19)

The definition in equation 19 requires two sets of parameters for the
same vocabulary

▶ 𝒗𝑤 : word vector (as input)
▶ 𝒖𝑤 : context vector (as output)

Quiz
Why we need two vectors for a word? Assume we only use one set
of the parameter {𝒗𝑤}

𝑝(𝑤𝑡+𝑖 | 𝑤𝑡 ;𝜽) =
exp(𝒗T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒗T

𝑤′𝒗𝑤𝑡)
(20)

A trivial solution that maximize the (log-)probability is 𝒗𝑤𝑡+𝑖 = 𝒗𝑤 ,
which means all words will have the exactly same embedding. 28

Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (21)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)

= 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.

29

Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (21)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)

= 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.

29

Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (21)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
= 𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 − log
∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.

29

Objective Function

The objective function of a skip-gram model is defined as

1
𝑇

𝑇∑
𝑡=1

∑
−𝑐≤𝑖≤𝑐;𝑖≠0

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) (21)

Each log probability is defined as

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = log
exp(𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡)∑
𝑤′∈Vexp(𝒖T

𝑤′𝒗𝑤𝑡)
= 𝒖T

𝑤𝑡+𝑖𝒗𝑤𝑡 − log
∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

Essentially, this is learning a classifier over a huge number of classes.
In practice, the vocab size could be 10K, 50K or even bigger, the
normalization of prediction probability is the major bottleneck.

29

Negative Sampling

Review what have discussed so far

▶ The ultimate goal is learning word representations instead of a
classifier

▶ The normalization of prediction probability is computationally
expensive

To reduce the computational complexity, we can replace

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

with the following function as objective

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡)

��
𝑤′∼𝑝𝑛 (𝑤) (22)

where 𝑘 is the number of negative samples and 𝜎(·) is the Sigmoid
function (the one used for binary classification in lecture 02)

30

Negative Sampling

Review what have discussed so far

▶ The ultimate goal is learning word representations instead of a
classifier

▶ The normalization of prediction probability is computationally
expensive

To reduce the computational complexity, we can replace

log 𝑝(𝑤𝑡+𝑖 | 𝑤𝑡) = 𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑡)

with the following function as objective

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡)

��
𝑤′∼𝑝𝑛 (𝑤) (22)

where 𝑘 is the number of negative samples and 𝜎(·) is the Sigmoid
function (the one used for binary classification in lecture 02)

30

Basic Training Procedure

Example with 𝑡 = 6, 𝑖 = 1, and 𝑘 = 3

. . . finding a better word representation . . .

𝑤6 𝑤7 negative samples

better word larger
cause

window

For a given word 𝑤𝑡 and 𝑖

1. Treat its neighboring context word 𝑤𝑡+𝑖 as positive example
2. Randomly sample 𝑘 other words from the vocab as negative

examples
3. Optimize Equation 22 to update both 𝒗· and 𝒖·

31

Basic Training Procedure

Example with 𝑡 = 6, 𝑖 = 1, and 𝑘 = 3

. . . finding a better word representation . . .

𝑤6 𝑤7 negative samples

better word larger
cause

window

For a given word 𝑤𝑡 and 𝑖

1. Treat its neighboring context word 𝑤𝑡+𝑖 as positive example
2. Randomly sample 𝑘 other words from the vocab as negative

examples
3. Optimize Equation 22 to update both 𝒗· and 𝒖·

31

Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡)

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32

Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡)

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32

Two Factors in Negative Sampling

There are two factors that can affect the model
performance [Mikolov et al., 2013a]

log 𝜎(𝒖T
𝑤𝑡+𝑖𝒗𝑤𝑡) −

𝑘∑
𝑖=1

log 𝜎(𝒖T
𝑤′𝒗𝑤𝑡)

��
𝑤′∼𝑝𝑛 (𝑤) (23)

▶ The size of negative samples 𝑘
▶ 5 ≤ 𝑘 ≤ 20 works better for small datasets
▶ 2 ≤ 𝑘 ≤ 5 is enough for large datasets

▶ Noisy distribution 𝑝𝑛(𝑤)
▶ 𝑝𝑛(𝑤) ∝ unigram-distribution(𝑤) 3

4

32

Results

▶ Context window size: 3
▶ Word embedding dimension: 50
▶ Epochs of training: 3

natural embeddings

processing contextualized

nlp embedding

nl representations

language vectors

understanding elmo

nlu static

nlg word

fundamental polyglot

33

Word Embeddings: GloVe

Glove

The motivation of GloVe [?] is to find a balance between the methods
based on

▶ global matrix factorization (e.g., LSA) and
▶ local context windows (e.g., Skip-gram).

35

Word-to-word Co-occurrence Matrix

▶ Define X with 𝑋𝑖 , 𝑗 denotes the frequency of word 𝑗 appears in the
context of word 𝑖

X =


. .

𝑋𝑖 ,1 . . . 𝑋𝑖 , 𝑗−1 𝑋𝑖 , 𝑗 𝑋𝑖 , 𝑗+1 . . . 𝑋𝑖 ,𝑉

. .

 (24)

Each row corresponds one target word, each column
corresponds one context word.

▶ Empirical probability estimation of 𝑤 𝑗 given 𝑤𝑖

𝑄(𝑤 𝑗 | 𝑤𝑖) =
𝑋𝑖 𝑗

𝑋𝑖
(25)

where 𝑋𝑖 =
∑
𝑗 𝑋𝑖 , 𝑗

36

Word-to-word Co-occurrence Matrix

▶ Define X with 𝑋𝑖 , 𝑗 denotes the frequency of word 𝑗 appears in the
context of word 𝑖

X =


. .

𝑋𝑖 ,1 . . . 𝑋𝑖 , 𝑗−1 𝑋𝑖 , 𝑗 𝑋𝑖 , 𝑗+1 . . . 𝑋𝑖 ,𝑉

. .

 (24)

Each row corresponds one target word, each column
corresponds one context word.

▶ Empirical probability estimation of 𝑤 𝑗 given 𝑤𝑖

𝑄(𝑤 𝑗 | 𝑤𝑖) =
𝑋𝑖 𝑗

𝑋𝑖
(25)

where 𝑋𝑖 =
∑
𝑗 𝑋𝑖 , 𝑗

36

Probability Estimation via Word Embeddings

Another way to estimate the probability of 𝑤 𝑗 given 𝑤𝑖 is

𝑃(𝑤 𝑗 | 𝑤𝑖) =
exp(𝒖T

𝑤 𝑗
𝒗𝑤𝑖)∑

𝑤′∈Vexp(𝒖T
𝑤′𝒗𝑤𝑖)

(26)

with 𝒖· and 𝒗· are two sets of parameters (embeddings) associated
with words, similar to the Skip-gram model.

37

GloVe

The basic idea is to learn {𝒗·} and {𝒖·}, such that

𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ 𝑃(𝑤 𝑗 | 𝑤𝑖) (27)

or
log𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ log𝑃(𝑤 𝑗 | 𝑤𝑖) (28)

More specific

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖) (29)

38

GloVe

The basic idea is to learn {𝒗·} and {𝒖·}, such that

𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ 𝑃(𝑤 𝑗 | 𝑤𝑖) (27)

or
log𝑄(𝑤 𝑗 | 𝑤𝑖) ≈ log𝑃(𝑤 𝑗 | 𝑤𝑖) (28)

More specific

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖) (29)

38

GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖) (30)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖)

}2
(31)

It can be further simplified as (Eq. 16 in [?]){
log(𝑋𝑖 𝑗) − 𝒖T

𝑤 𝑗
𝒗𝑤𝑖

}2
(32)

if we only consider the unnormalized version of 𝑃 and 𝑄.

39

GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖) (30)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖)

}2
(31)

It can be further simplified as (Eq. 16 in [?]){
log(𝑋𝑖 𝑗) − 𝒖T

𝑤 𝑗
𝒗𝑤𝑖

}2
(32)

if we only consider the unnormalized version of 𝑃 and 𝑄.

39

GloVe (II)

Starting point:

log(𝑋𝑖 𝑗) − log(𝑋𝑖) ≈ 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 − log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖) (30)

In order to find the best approximation, we could formulate this as a
optimization problem{

log(𝑋𝑖 𝑗) − log(𝑋𝑖) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖 + log

∑
𝑤′∈V

exp(𝒖T
𝑤′𝒗𝑤𝑖)

}2
(31)

It can be further simplified as (Eq. 16 in [?]){
log(𝑋𝑖 𝑗) − 𝒖T

𝑤 𝑗
𝒗𝑤𝑖

}2
(32)

if we only consider the unnormalized version of 𝑃 and 𝑄.

39

Objective Function

The overall objective function is defined as∑
𝑤𝑖

∑
𝑤 𝑗

(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖)2 (33)

The objective function is further refined by discouraging
high-frequency words as∑

𝑤𝑖

∑
𝑤 𝑗

𝑓 (𝑋𝑖 𝑗)(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖)2 (34)

40

Objective Function

The overall objective function is defined as∑
𝑤𝑖

∑
𝑤 𝑗

(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖)2 (33)

The objective function is further refined by discouraging
high-frequency words as∑

𝑤𝑖

∑
𝑤 𝑗

𝑓 (𝑋𝑖 𝑗)(log(𝑋𝑖 𝑗) − 𝒖T
𝑤 𝑗
𝒗𝑤𝑖)2 (34)

40

Down-weighting

Weighting function:

𝑓 (𝑥) =
{
(𝑥
𝑥max

)𝑎 if 𝑥 < 𝑥max

1 otherwise
(35)

where 𝑎 = 3/4.

41

Skip-gram as Implicit Matrix Factorization

[?] shows that skip-gram with negative sampling can be viewed as an
implicit matrix factorization over a word-word co-occurrence matrix
weighted by point-wise mutual information (PMI).

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ PMI(𝑤𝑖 , 𝑤 𝑗) − log 𝑘 (36)

where PMI(𝑤𝑖 , 𝑤 𝑗) is the mutual information of 𝑃(𝑤𝑖) and 𝑃(𝑤 𝑗) with
a given window size and 𝑘 is the number of negative samples.

42

Skip-gram as Implicit Matrix Factorization (II)

The definition of PMI(𝑤𝑖 , 𝑤 𝑗) is

PMI(𝑤𝑖 , 𝑤 𝑗) = log
𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) (37)

Combine 36 and 37, we have

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log

𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

− log 𝑘

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) − log 𝑘
= log(𝑋𝑖 𝑗) − log(𝑋𝑖) − log(𝑋𝑗) + log𝐷 − log 𝑘

(38)

Similar to Eq. 8 in [?].

43

Skip-gram as Implicit Matrix Factorization (II)

The definition of PMI(𝑤𝑖 , 𝑤 𝑗) is

PMI(𝑤𝑖 , 𝑤 𝑗) = log
𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) (37)

Combine 36 and 37, we have

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log

𝑃(𝑤𝑖 , 𝑤 𝑗)
𝑃(𝑤𝑖)𝑃(𝑤 𝑗)

− log 𝑘

= log𝑃(𝑤 𝑗 | 𝑤𝑖) − log𝑃(𝑤 𝑗) − log 𝑘
= log(𝑋𝑖 𝑗) − log(𝑋𝑖) − log(𝑋𝑗) + log𝐷 − log 𝑘

(38)

Similar to Eq. 8 in [?].

43

Essentially,

A unified framework

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log(𝑋𝑖 𝑗) + 𝑔(X) (39)

Which one matters?

▶ 𝑔(X), or
▶ Implicit/explicit optimization, or
▶ Other tricks (down-sampling, hyper-parameters, etc.)

44

Essentially,

A unified framework

𝒖T
𝑤 𝑗
𝒗𝑤𝑖 ≈ log(𝑋𝑖 𝑗) + 𝑔(X) (39)

Which one matters?

▶ 𝑔(X), or
▶ Implicit/explicit optimization, or
▶ Other tricks (down-sampling, hyper-parameters, etc.)

44

Evaluation Methods

Overview

▶ Intrinsic Evaluation1

▶ Word similarity
▶ Word analogy
▶ Word intrusion

▶ Extrinsic Evaluation
▶ Evaluating based on a downstream task, such as text classification

1http://bionlp-www.utu.fi/wv_demo/
46

http://bionlp-www.utu.fi/wv_demo/

Word Similarity

Let 𝑤𝑖 and 𝑤 𝑗 be two words, and 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 be the corresponding
word embeddings, word similarity can be obtained by computing
their cosine similarity between 𝒗𝑤𝑖 and 𝒗𝑤 𝑗 as

cos(𝒗𝑤𝑖 , 𝒗𝑤 𝑗) =
⟨𝒗𝑤𝑖 , 𝒗𝑤 𝑗 ⟩

∥𝒗𝑤𝑖∥2 · ∥𝒗𝑤 𝑗∥2
(40)

47

Examples

Figure: Sample word pairs along with their human similarity judgment from
WS-353 [Faruqui et al., 2016].

48

Datasets

Available word similarity datasets

Figure: Word similarity datasets [Faruqui et al., 2016].

49

Word Similarity

the basis for other intrinsic evaluations

50

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

51

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

51

Word Analogy

▶ It is sometimes referred as linguistic
regularity [Mikolov et al., 2013b]

▶ The basic setup
𝑤𝑎 : 𝑤𝑏 = 𝑤𝑐 :?

where 𝑤𝑎,𝑏,𝑐 are words and 𝑤𝑎 , 𝑤𝑏 are related under a certain
linguistic relation

▶ Example
▶ Semantic: love : like = hate :?
▶ Syntactic: quick : quickly = happy :?
▶ Gender: king : man = queen :?
▶ Others: Beijing : China = Paris :?

▶ Calculation: (𝒗𝑤𝑎 − 𝒗𝑤𝑏)T(𝒗𝑤𝑐 − 𝒗𝑤𝑑)

51

Word Analogy: Examples

Figure: Word analogy examples.

52

Word Intrusion

From [Faruqui et al., 2014]

naval, industrial, technological, marine, identity

▶ constructed from word embeddings
▶ evaluated by human annotators

53

Extrinsic Evaluation

▶ Implicit assumption: there is a consistent, global ranking of word
embedding quality, and that higher quality embeddings will
necessarily improve results on any downstream task.

▶ Unfortunately, this assumption does not hold in
general [Schnabel et al., 2015].

▶ Examples
▶ empirical results show that it may not be able give much help to

syntactic parsing [Andreas and Klein, 2014]
▶ adding surface-form features always help

([Ji and Eisenstein, 2014a] and many other works)

54

Further Discussion

Gender Bias

𝒗man − 𝒗woman ≈ 𝒗computer programmer − 𝒗homemaker (41)
𝒗father − 𝒗mother ≈ 𝒗doctor − 𝒗nurse (42)

[Bolukbasi et al., 2016]

56

Example

[Bolukbasi et al., 2016]
57

Problem

▶ Word embeddings from either Word2vec or GloVe encode not
just semantic information

▶ In some applications, we want to emphasize one particular
aspect of linguistic information
▶ Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
▶ Discourse information [Ji and Eisenstein, 2014b]

▶ Solutions
▶ fine-tuning word embeddings with certain constraints

[Faruqui et al., 2014, Mrksic et al., 2016]
▶ learning from supervision information [Ji and Eisenstein, 2014b]

58

Problem

▶ Word embeddings from either Word2vec or GloVe encode not
just semantic information

▶ In some applications, we want to emphasize one particular
aspect of linguistic information
▶ Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
▶ Discourse information [Ji and Eisenstein, 2014b]

▶ Solutions
▶ fine-tuning word embeddings with certain constraints

[Faruqui et al., 2014, Mrksic et al., 2016]
▶ learning from supervision information [Ji and Eisenstein, 2014b]

58

Problem

▶ Word embeddings from either Word2vec or GloVe encode not
just semantic information

▶ In some applications, we want to emphasize one particular
aspect of linguistic information
▶ Semantic information [Faruqui et al., 2014, Mrksic et al., 2016]
▶ Discourse information [Ji and Eisenstein, 2014b]

▶ Solutions
▶ fine-tuning word embeddings with certain constraints

[Faruqui et al., 2014, Mrksic et al., 2016]
▶ learning from supervision information [Ji and Eisenstein, 2014b]

58

Retrofitting

Retrofitting with WordNet [Miller, 1995]

▶ Ω = (𝑉, 𝐸) be a semantic graph over words, where 𝑉 is the node
set with each element as a word, and 𝐸 is the edge set with each
edge representing a semantic relation between two words.

59

Retrofitting (II)

▶ The goal is to learn word embeddings {𝒗̃} such that 𝒗̃𝑖 and 𝒗̃ 𝑗 are
close enough if (𝑖 , 𝑗) ∈ 𝐸.

▶ In addition, {𝒗̃} should also satisfy the constraint from original
word embeddings, such that 𝑣̃𝑖 and 𝒗̃𝑖 are close enough for every
word in V.

Ψ(Ṽ) =
|V|∑
𝑖=1

[
𝛼𝑖∥𝒗𝑖 − 𝒗̃𝑖∥2 +

∑
(𝑖 , 𝑗)∈𝐸

𝛽𝑖 𝑗∥𝒗̃𝑖 − 𝒗̃ 𝑗∥2
]

(43)

60

Counter-fitting

Inject antonymy and synonymy constraints into word embedding
space to improve the embeddings’ capability for judging semantic
similarity

[Mrksic et al., 2016] 61

Learning from Supervision Signal

Figure: (Left) Word embeddings learned with supervision signal; (Right)
Unsupervised word embeddings.

62

Reference

Andreas, J. and Klein, D. (2014).
How much do word embeddings encode about syntax?
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages
822–827.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and Kalai, A. T. (2016).
Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
In Advances in Neural Information Processing Systems, pages 4349–4357.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2014).
Retrofitting word vectors to semantic lexicons.
arXiv preprint arXiv:1411.4166.

Faruqui, M., Tsvetkov, Y., Rastogi, P., and Dyer, C. (2016).
Problems with evaluation of word embeddings using word similarity tasks.
arXiv preprint arXiv:1605.02276.

Ji, Y. and Eisenstein, J. (2014a).
One vector is not enough: Entity-augmented distributional semantics for discourse relations.
arXiv preprint arXiv:1411.6699.

Ji, Y. and Eisenstein, J. (2014b).
Representation learning for text-level discourse parsing.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
13–24.

Jurafsky, D. and Martin, J. (2019).
Speech and language processing.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013a).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b).
Linguistic regularities in continuous space word representations.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 746–751.

Miller, G. A. (1995).
Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41.

Mrksic, N., Seaghdha, D. O., Thomson, B., Gasic, M., Rojas-Barahona, L., Su, P.-H., Vandyke, D., Wen, T.-H., and Young, S. (2016).
Counter-fitting word vectors to linguistic constraints.

Schnabel, T., Labutov, I., Mimno, D., and Joachims, T. (2015).
Evaluation methods for unsupervised word embeddings.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 298–307.

63

	Overview
	Distributional Hypothesis
	Latent Semantic Analysis
	The Skip-gram Model
	Word Embeddings: GloVe
	Evaluation Methods
	Intrinsic Evaluation
	Extrinsic Evaluation

	Further Discussion
	Bias in Word Embeddings
	Extra Information

