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From Logistic Regression to Neu-
ral Networks



Logistic Regression

A quick review of logistic regression with 𝒙 = [𝑥1 , . . . , 𝑥𝑑] ∈ ℝ𝑑

▶ An basic form for binary classification 𝑦 ∈ {−1,+1}

𝑃(𝑌 = +1 | 𝒙) = 1
1 + exp(−⟨𝒘 , 𝒙⟩) (1)

▶ The sigmoid function 𝜎(𝑎)with 𝑎 ∈ ℝ, which is a monotonic
nonlinear function

𝜎(𝑎) = 1
1 + exp(−𝑎) (2)
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Graphical Representation

▶ A specific example of LR with four input features

𝑃(𝑌 = 1 | 𝒙) = 𝜎(
4∑
𝑗=1

𝑤 𝑗𝑥 𝑗) (3)

▶ The graphical representation of this LR model is
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From LR to a Simple Neural Network

Build upon logistic regression, a simple neural network with 𝐾
hidden units {𝑧𝑘}𝐾𝑘=1 can be constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ {1, . . . , 𝐾} (4)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘)

(5)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝐾 is the number of hidden units, each of them has the same form

as a LR.

▶ 𝑦 ∈ {−1,+1} (binary classification problem)
▶ {𝑤(1)

𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝜎(·) is called the activation function
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Mathematical Formulation

With the notations of matrix-vector multiplication, we can rewrite
these equations into a more concise form

▶ Element-wise formulation

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ [𝐾] (6)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (7)

▶ Matrix-vector formulation

𝒛 = 𝜎(W(1)𝒙) (8)
𝑃(𝑦 = +1 | 𝒙) = 𝜎((𝒘(𝑜))T𝒛) (9)

where W(1) ∈ ℝ𝐾×𝑑 and w(𝑜) ∈ ℝ𝐾
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Graphical Representation

Assume the input dimension 𝑑 = 4 and the number of hidden units
(hidden dimension) 𝐾 = 5, we can represent this neural network
model with a similar graphical representation
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Other Activation Functions

In deep learning, we have a few options about activation functions:

(a) Sign function

(b) Sigmoid and Tanh function

(c) ReLU function
[Jarrett et al., 2009]
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Learning Neural Networks



Neural Network Predictions

Consider the previously defined neural network model for binary
classification Y= {−1,+1},

▶ Re-write the model definition into a compact form

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(10)

where {𝒘(𝑜) ,W(1)} are the parameters

▶ Assume the ground-truth label is 𝑦, let’s introduce an empirical
distribution

𝑄(𝑌 = 𝑦′ | 𝒙) = 𝛿(𝑦′, 𝑦) =
{

1 𝑦′ = 𝑦

0 𝑦′ ≠ 𝑦
(11)
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Cross Entropy

Given one data point, The loss function of a neural network is usually
defined as the cross entropy of the prediction distribution 𝑝 and the
empirical distribution 𝑝

𝐻(𝑄, 𝑃) = −𝑄(𝑌 = +1 | 𝒙) log𝑃(𝑌 = +1 | 𝒙)
−𝑄(𝑌 = −1 | 𝒙) log𝑃(𝑌 = −1 | 𝒙) (12)

Since 𝑞 is defined with a Delta function, depending on 𝑦, we have

𝐻(𝑄, 𝑃) =
{
− log𝑃(𝑌 = +1 | 𝒙) 𝑌 = +1
− log𝑃(𝑌 = −1 | 𝒙) 𝑌 = −1

(13)
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Learning

▶ Given a set of training example 𝑆 = {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1, the loss

function is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦(𝑖) | 𝒙(𝑖)) (14)

where 𝜽 indicates all the parameters in a network.

▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined
two-layer neural network

▶ Just like learning a LR, we can use the gradient-based learning
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Gradient-based Learning

A simple description of gradient-based learning

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − 𝜂 · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(15)

where 𝜂 is the learning rate
3. Go back step 1 until it converges
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Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
)

·
𝜕𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙)

(17)
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Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(18)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

15



Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(18)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

15



Neural Text Classifiers



Network Architecture

We are going to build a simple neural network for text classification.
It includes three layers as the previous example

▶ Input layer
▶ Hidden layer
▶ Output layer

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer
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Example

Consider the following special case, where we have a 4-dimensional
BoW representation 𝒙 ∈ ℝ4 and a weight matrix 𝑾 ∈ ℝ5×4

𝑾𝒙 =



0.1 0.3 0.7 0.9
0.2 0.8 0.3 0.5
0.4 0.8 0.6 0.1
0.7 0.2 0.9 0.2
0.4 0.5 0.8 0.9


·


0
1
0
1


(19)

=



0.3
0.8
0.8
0.2
0.5


+



0.9
0.5
0.1
0.2
0.9



(20)

▶ Each column vector in 𝑾 corresponds one word in the BoW
representation

▶ The column vectors can be considered as representations of
words, in other words, word embeddings
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Example

Consider the following special case, where we have a 4-dimensional
BoW representation 𝒙 ∈ ℝ4 and a weight matrix 𝑾 ∈ ℝ5×4
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Data Processing

Similar to building a logistic regression classifier, we need the
following steps in data processing

▶ Tokenize texts
▶ Build a vocab
▶ Convert a text into a collection of word indices (instead of using

BoW representations)

In addition, we also need to divide the whole set of texts into small
batches

▶ Create mini-batches
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Input Layer

In the mini-batch setting, the model usually takes a subset of texts
instead of one single text. The input 𝑿 represents a word index
matrix, where each column vector 𝒙𝑖 is the word indices from a
corresponding text with paddings

𝑿 =


12 31 · · · 11 2
5 16 · · · 15 8
9 1 · · · 21 10
1 1 · · · 7 1

 ∈ ℝ
𝐿×𝐵 (21)

▶ This is a slightly different representation, compared to BoW

▶ 𝐵: the mini batch size
▶ 𝐿: the biggest length of a text in the mini batch
▶ Add extra padding tokens will make sentences in the mini batch

have the same length
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Hidden Layer

With the word index matrix, the hidden layer of a neural network
compute the representation of texts with the following steps

1. Create a mode-3 tensor X∈ ℝ𝐿×𝐵×𝐸 by representing each word
with a vector (word embedding)

2. Create text representations by summing over the first dimension,
which gives a matrix 𝑯 with size 𝐵 × 𝐸

3. Go through an element-wise activation function, e.g., the
Sigmoid function.
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Output Layer

With the representations of texts 𝑯 ∈ ℝ𝐵×𝐸, the output layer is
nothing different from the logistic regression model.

Checkout the demo code!
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Neural Networks: Tricks of the
Trade



Early Stopping

The idealized training and validation error curves: Vertical axis –
errors, horizontal axis – time

Stop training as soon as the validation error increases

[Montavon et al., 2012]
24



Early Stopping (II)

A real validation error during training

▶ Use check points and always the best model according to the
validation performance

▶ Stop training if the validation error keep increasing for a while (?)
25



Regularization: Weight Decay

Add a small modification to the gradient of 𝜽, such that

𝜽(new) ← 𝜽(old) − 𝜂 ·
( 𝜕𝐿(𝜽)

𝜕𝜽

���
𝜽=𝜽(old)

+ 𝛼𝜽(old)) (22)

▶ It is equivalent to the ℓ2 regularization
▶ Proposed in [Plaut et al., 1986] based on a different intuition
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Regularization: Dropout

Randomly remove some components from the input layer during
training

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer

▶ Proposed in [Hinton et al., 2012] and later published as
[Srivastava et al., 2014]

▶ Provides a regularization effect that reduce the correlation with
noisy features

▶ Can also be applied to hidden layers
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Example Applications



Multi-choice Question Answering

Question
George wants to warm his hands quickly by rubbing them. Which skin
surface will produce the most heat?

Choices
A : dry palms
B : wet palms
C : palms covered with oil
D : palms covered with lotion

Correct Answer (Label)
A

To form the training set with examples like this, what information
should be in the input/output?
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Option 1

Input
George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat? A: dry palms; B: wet
palms; C: palms covered with oil; D: palms covered with lotion.

Output
A

31



ChatGPT
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Option 2

Input
George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat? A: dry palms; B: wet
plams; C: palms covered with oil; D: palms covered with lotion.

Output
A: dry palms

It can be used with generative models, but not classification models
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Option 3

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? A: dry palms

True

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? B: wet palms

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? C: palms
covered with oil

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? D: palms
covered with lotion

False

We can even get rid of the A, B, C, D from the strings
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ChatGPT Again
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Summary

1. From Logistic Regression to Neural Networks

2. Learning Neural Networks

3. Neural Text Classifiers

4. Neural Networks: Tricks of the Trade

5. Example Applications
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