
CS 6501 Natural Language
Processing
Text Classification (II): Neural Classifiers

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. From Logistic Regression to Neural Networks

2. Learning Neural Networks

3. Neural Text Classifiers

4. Neural Networks: Tricks of the Trade

5. Example Applications

1

From Logistic Regression to Neu-
ral Networks

Logistic Regression

A quick review of logistic regression with 𝒙 = [𝑥1 , . . . , 𝑥𝑑] ∈ ℝ𝑑

▶ An basic form for binary classification 𝑦 ∈ {−1,+1}

𝑃(𝑌 = +1 | 𝒙) = 1
1 + exp(−⟨𝒘 , 𝒙⟩) (1)

▶ The sigmoid function 𝜎(𝑎)with 𝑎 ∈ ℝ, which is a monotonic
nonlinear function

𝜎(𝑎) = 1
1 + exp(−𝑎) (2)

3

Logistic Regression

A quick review of logistic regression with 𝒙 = [𝑥1 , . . . , 𝑥𝑑] ∈ ℝ𝑑

▶ An basic form for binary classification 𝑦 ∈ {−1,+1}

𝑃(𝑌 = +1 | 𝒙) = 1
1 + exp(−⟨𝒘 , 𝒙⟩) (1)

▶ The sigmoid function 𝜎(𝑎)with 𝑎 ∈ ℝ, which is a monotonic
nonlinear function

𝜎(𝑎) = 1
1 + exp(−𝑎) (2)

3

Graphical Representation

▶ A specific example of LR with four input features

𝑃(𝑌 = 1 | 𝒙) = 𝜎(
4∑
𝑗=1

𝑤 𝑗𝑥 𝑗) (3)

▶ The graphical representation of this LR model is

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer

𝑦

Output
layer

4

Graphical Representation

▶ A specific example of LR with four input features

𝑃(𝑌 = 1 | 𝒙) = 𝜎(
4∑
𝑗=1

𝑤 𝑗𝑥 𝑗) (3)

▶ The graphical representation of this LR model is

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer

𝑦

Output
layer

4

From LR to a Simple Neural Network

Build upon logistic regression, a simple neural network with 𝐾
hidden units {𝑧𝑘}𝐾𝑘=1 can be constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ {1, . . . , 𝐾} (4)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘)

(5)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝐾 is the number of hidden units, each of them has the same form

as a LR.

▶ 𝑦 ∈ {−1,+1} (binary classification problem)
▶ {𝑤(1)

𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝜎(·) is called the activation function

5

From LR to a Simple Neural Network

Build upon logistic regression, a simple neural network with 𝐾
hidden units {𝑧𝑘}𝐾𝑘=1 can be constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ {1, . . . , 𝐾} (4)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (5)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝐾 is the number of hidden units, each of them has the same form

as a LR.
▶ 𝑦 ∈ {−1,+1} (binary classification problem)

▶ {𝑤(1)
𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝜎(·) is called the activation function

5

From LR to a Simple Neural Network

Build upon logistic regression, a simple neural network with 𝐾
hidden units {𝑧𝑘}𝐾𝑘=1 can be constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ {1, . . . , 𝐾} (4)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (5)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝐾 is the number of hidden units, each of them has the same form

as a LR.
▶ 𝑦 ∈ {−1,+1} (binary classification problem)
▶ {𝑤(1)

𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝜎(·) is called the activation function
5

Mathematical Formulation

With the notations of matrix-vector multiplication, we can rewrite
these equations into a more concise form

▶ Element-wise formulation

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ [𝐾] (6)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (7)

▶ Matrix-vector formulation

𝒛 = 𝜎(W(1)𝒙) (8)
𝑃(𝑦 = +1 | 𝒙) = 𝜎((𝒘(𝑜))T𝒛) (9)

where W(1) ∈ ℝ𝐾×𝑑 and w(𝑜) ∈ ℝ𝐾

6

Mathematical Formulation

With the notations of matrix-vector multiplication, we can rewrite
these equations into a more concise form

▶ Element-wise formulation

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥 𝑗) 𝑘 ∈ [𝐾] (6)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (7)

▶ Matrix-vector formulation

𝒛 = 𝜎(W(1)𝒙) (8)
𝑃(𝑦 = +1 | 𝒙) = 𝜎((𝒘(𝑜))T𝒛) (9)

where W(1) ∈ ℝ𝐾×𝑑 and w(𝑜) ∈ ℝ𝐾

6

Graphical Representation

Assume the input dimension 𝑑 = 4 and the number of hidden units
(hidden dimension) 𝐾 = 5, we can represent this neural network
model with a similar graphical representation

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer

7

Other Activation Functions

In deep learning, we have a few options about activation functions:

(a) Sign function

(b) Sigmoid and Tanh function

(c) ReLU function
[Jarrett et al., 2009]

8

Other Activation Functions

In deep learning, we have a few options about activation functions:

(a) Sign function (b) Sigmoid and Tanh function

(c) ReLU function
[Jarrett et al., 2009]

8

Other Activation Functions

In deep learning, we have a few options about activation functions:

(a) Sign function (b) Sigmoid and Tanh function

(c) ReLU function
[Jarrett et al., 2009]

8

Learning Neural Networks

Neural Network Predictions

Consider the previously defined neural network model for binary
classification Y= {−1,+1},

▶ Re-write the model definition into a compact form

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(10)

where {𝒘(𝑜) ,W(1)} are the parameters

▶ Assume the ground-truth label is 𝑦, let’s introduce an empirical
distribution

𝑄(𝑌 = 𝑦′ | 𝒙) = 𝛿(𝑦′, 𝑦) =
{

1 𝑦′ = 𝑦

0 𝑦′ ≠ 𝑦
(11)

10

Neural Network Predictions

Consider the previously defined neural network model for binary
classification Y= {−1,+1},

▶ Re-write the model definition into a compact form

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(10)

where {𝒘(𝑜) ,W(1)} are the parameters
▶ Assume the ground-truth label is 𝑦, let’s introduce an empirical

distribution

𝑄(𝑌 = 𝑦′ | 𝒙) = 𝛿(𝑦′, 𝑦) =
{

1 𝑦′ = 𝑦

0 𝑦′ ≠ 𝑦
(11)

10

Cross Entropy

Given one data point, The loss function of a neural network is usually
defined as the cross entropy of the prediction distribution 𝑝 and the
empirical distribution 𝑝

𝐻(𝑄, 𝑃) = −𝑄(𝑌 = +1 | 𝒙) log𝑃(𝑌 = +1 | 𝒙)
−𝑄(𝑌 = −1 | 𝒙) log𝑃(𝑌 = −1 | 𝒙) (12)

Since 𝑞 is defined with a Delta function, depending on 𝑦, we have

𝐻(𝑄, 𝑃) =
{
− log𝑃(𝑌 = +1 | 𝒙) 𝑌 = +1
− log𝑃(𝑌 = −1 | 𝒙) 𝑌 = −1

(13)

11

Cross Entropy

Given one data point, The loss function of a neural network is usually
defined as the cross entropy of the prediction distribution 𝑝 and the
empirical distribution 𝑝

𝐻(𝑄, 𝑃) = −𝑄(𝑌 = +1 | 𝒙) log𝑃(𝑌 = +1 | 𝒙)
−𝑄(𝑌 = −1 | 𝒙) log𝑃(𝑌 = −1 | 𝒙) (12)

Since 𝑞 is defined with a Delta function, depending on 𝑦, we have

𝐻(𝑄, 𝑃) =
{
− log𝑃(𝑌 = +1 | 𝒙) 𝑌 = +1
− log𝑃(𝑌 = −1 | 𝒙) 𝑌 = −1

(13)

11

Learning

▶ Given a set of training example 𝑆 = {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1, the loss

function is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦(𝑖) | 𝒙(𝑖)) (14)

where 𝜽 indicates all the parameters in a network.

▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined
two-layer neural network

▶ Just like learning a LR, we can use the gradient-based learning

12

Learning

▶ Given a set of training example 𝑆 = {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1, the loss

function is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦(𝑖) | 𝒙(𝑖)) (14)

where 𝜽 indicates all the parameters in a network.

▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined
two-layer neural network

▶ Just like learning a LR, we can use the gradient-based learning

12

Learning

▶ Given a set of training example 𝑆 = {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1, the loss

function is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦(𝑖) | 𝒙(𝑖)) (14)

where 𝜽 indicates all the parameters in a network.

▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined
two-layer neural network

▶ Just like learning a LR, we can use the gradient-based learning

12

Gradient-based Learning

A simple description of gradient-based learning

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − 𝜂 · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(15)

where 𝜂 is the learning rate
3. Go back step 1 until it converges

13

Gradient-based Learning

A simple description of gradient-based learning

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − 𝜂 · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(15)

where 𝜂 is the learning rate

3. Go back step 1 until it converges

13

Gradient-based Learning

A simple description of gradient-based learning

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − 𝜂 · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(15)

where 𝜂 is the learning rate
3. Go back step 1 until it converges

13

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
)

·
𝜕𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙)

(17)

14

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
)

·
𝜕𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙)

(17)

14

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙)

(17)

14

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙)

(17)

14

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(16)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙) (17)

14

Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(18)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

15

Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(18)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

15

Neural Text Classifiers

Network Architecture

We are going to build a simple neural network for text classification.
It includes three layers as the previous example

▶ Input layer
▶ Hidden layer
▶ Output layer

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer

17

Example

Consider the following special case, where we have a 4-dimensional
BoW representation 𝒙 ∈ ℝ4 and a weight matrix 𝑾 ∈ ℝ5×4

𝑾𝒙 =



0.1 0.3 0.7 0.9
0.2 0.8 0.3 0.5
0.4 0.8 0.6 0.1
0.7 0.2 0.9 0.2
0.4 0.5 0.8 0.9


·


0
1
0
1


(19)

=



0.3
0.8
0.8
0.2
0.5


+



0.9
0.5
0.1
0.2
0.9



(20)

▶ Each column vector in 𝑾 corresponds one word in the BoW
representation

▶ The column vectors can be considered as representations of
words, in other words, word embeddings

18

Example

Consider the following special case, where we have a 4-dimensional
BoW representation 𝒙 ∈ ℝ4 and a weight matrix 𝑾 ∈ ℝ5×4

𝑾𝒙 =



0.1 0.3 0.7 0.9
0.2 0.8 0.3 0.5
0.4 0.8 0.6 0.1
0.7 0.2 0.9 0.2
0.4 0.5 0.8 0.9


·


0
1
0
1


(19)

=



0.3
0.8
0.8
0.2
0.5


+



0.9
0.5
0.1
0.2
0.9


(20)

▶ Each column vector in 𝑾 corresponds one word in the BoW
representation

▶ The column vectors can be considered as representations of
words, in other words, word embeddings

18

Example

Consider the following special case, where we have a 4-dimensional
BoW representation 𝒙 ∈ ℝ4 and a weight matrix 𝑾 ∈ ℝ5×4

𝑾𝒙 =



0.1 0.3 0.7 0.9
0.2 0.8 0.3 0.5
0.4 0.8 0.6 0.1
0.7 0.2 0.9 0.2
0.4 0.5 0.8 0.9


·


0
1
0
1


(19)

=



0.3
0.8
0.8
0.2
0.5


+



0.9
0.5
0.1
0.2
0.9


(20)

▶ Each column vector in 𝑾 corresponds one word in the BoW
representation

▶ The column vectors can be considered as representations of
words, in other words, word embeddings 18

Data Processing

Similar to building a logistic regression classifier, we need the
following steps in data processing

▶ Tokenize texts
▶ Build a vocab
▶ Convert a text into a collection of word indices (instead of using

BoW representations)

In addition, we also need to divide the whole set of texts into small
batches

▶ Create mini-batches

19

Data Processing

Similar to building a logistic regression classifier, we need the
following steps in data processing

▶ Tokenize texts
▶ Build a vocab
▶ Convert a text into a collection of word indices (instead of using

BoW representations)

In addition, we also need to divide the whole set of texts into small
batches

▶ Create mini-batches

19

Input Layer

In the mini-batch setting, the model usually takes a subset of texts
instead of one single text. The input 𝑿 represents a word index
matrix, where each column vector 𝒙𝑖 is the word indices from a
corresponding text with paddings

𝑿 =


12 31 · · · 11 2
5 16 · · · 15 8
9 1 · · · 21 10
1 1 · · · 7 1

 ∈ ℝ
𝐿×𝐵 (21)

▶ This is a slightly different representation, compared to BoW

▶ 𝐵: the mini batch size
▶ 𝐿: the biggest length of a text in the mini batch
▶ Add extra padding tokens will make sentences in the mini batch

have the same length

20

Input Layer

In the mini-batch setting, the model usually takes a subset of texts
instead of one single text. The input 𝑿 represents a word index
matrix, where each column vector 𝒙𝑖 is the word indices from a
corresponding text with paddings

𝑿 =


12 31 · · · 11 2
5 16 · · · 15 8
9 1 · · · 21 10
1 1 · · · 7 1

 ∈ ℝ
𝐿×𝐵 (21)

▶ This is a slightly different representation, compared to BoW
▶ 𝐵: the mini batch size
▶ 𝐿: the biggest length of a text in the mini batch
▶ Add extra padding tokens will make sentences in the mini batch

have the same length
20

Hidden Layer

With the word index matrix, the hidden layer of a neural network
compute the representation of texts with the following steps

1. Create a mode-3 tensor X∈ ℝ𝐿×𝐵×𝐸 by representing each word
with a vector (word embedding)

2. Create text representations by summing over the first dimension,
which gives a matrix 𝑯 with size 𝐵 × 𝐸

3. Go through an element-wise activation function, e.g., the
Sigmoid function.

21

Hidden Layer

With the word index matrix, the hidden layer of a neural network
compute the representation of texts with the following steps

1. Create a mode-3 tensor X∈ ℝ𝐿×𝐵×𝐸 by representing each word
with a vector (word embedding)

2. Create text representations by summing over the first dimension,
which gives a matrix 𝑯 with size 𝐵 × 𝐸

3. Go through an element-wise activation function, e.g., the
Sigmoid function.

21

Hidden Layer

With the word index matrix, the hidden layer of a neural network
compute the representation of texts with the following steps

1. Create a mode-3 tensor X∈ ℝ𝐿×𝐵×𝐸 by representing each word
with a vector (word embedding)

2. Create text representations by summing over the first dimension,
which gives a matrix 𝑯 with size 𝐵 × 𝐸

3. Go through an element-wise activation function, e.g., the
Sigmoid function.

21

Output Layer

With the representations of texts 𝑯 ∈ ℝ𝐵×𝐸, the output layer is
nothing different from the logistic regression model.

Checkout the demo code!

22

Output Layer

With the representations of texts 𝑯 ∈ ℝ𝐵×𝐸, the output layer is
nothing different from the logistic regression model.

Checkout the demo code!

22

Neural Networks: Tricks of the
Trade

Early Stopping

The idealized training and validation error curves: Vertical axis –
errors, horizontal axis – time

Stop training as soon as the validation error increases

[Montavon et al., 2012]
24

Early Stopping (II)

A real validation error during training

▶ Use check points and always the best model according to the
validation performance

▶ Stop training if the validation error keep increasing for a while (?)
25

Regularization: Weight Decay

Add a small modification to the gradient of 𝜽, such that

𝜽(new) ← 𝜽(old) − 𝜂 ·
(𝜕𝐿(𝜽)

𝜕𝜽

���
𝜽=𝜽(old)

+ 𝛼𝜽(old)) (22)

▶ It is equivalent to the ℓ2 regularization
▶ Proposed in [Plaut et al., 1986] based on a different intuition

26

Regularization: Dropout

Randomly remove some components from the input layer during
training

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer

▶ Proposed in [Hinton et al., 2012] and later published as
[Srivastava et al., 2014]

▶ Provides a regularization effect that reduce the correlation with
noisy features

▶ Can also be applied to hidden layers

27

Regularization: Dropout

Randomly remove some components from the input layer during
training

𝑥1

𝑥2

𝑥3

𝑥4

Input
layer 𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

Hidden
layer

𝑦

Output
layer

▶ Proposed in [Hinton et al., 2012] and later published as
[Srivastava et al., 2014]

▶ Provides a regularization effect that reduce the correlation with
noisy features

▶ Can also be applied to hidden layers
27

Neural Networks: Tricks of the Trade

28

Neural Networks: Tricks of the Trade

28

Example Applications

Multi-choice Question Answering

Question
George wants to warm his hands quickly by rubbing them. Which skin
surface will produce the most heat?

Choices
A : dry palms
B : wet palms
C : palms covered with oil
D : palms covered with lotion

Correct Answer (Label)
A

To form the training set with examples like this, what information
should be in the input/output?

30

Multi-choice Question Answering

Question
George wants to warm his hands quickly by rubbing them. Which skin
surface will produce the most heat?

Choices
A : dry palms
B : wet palms
C : palms covered with oil
D : palms covered with lotion

Correct Answer (Label)
A

To form the training set with examples like this, what information
should be in the input/output?

30

Option 1

Input
George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat? A: dry palms; B: wet
palms; C: palms covered with oil; D: palms covered with lotion.

Output
A

31

ChatGPT

32

Option 2

Input
George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat? A: dry palms; B: wet
plams; C: palms covered with oil; D: palms covered with lotion.

Output
A: dry palms

It can be used with generative models, but not classification models

33

Option 2

Input
George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat? A: dry palms; B: wet
plams; C: palms covered with oil; D: palms covered with lotion.

Output
A: dry palms

It can be used with generative models, but not classification models

33

Option 3

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? A: dry palms

True

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? B: wet palms

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? C: palms
covered with oil

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? D: palms
covered with lotion

False

We can even get rid of the A, B, C, D from the strings

34

Option 3

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? A: dry palms

True

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? B: wet palms

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? C: palms
covered with oil

False

George wants to warm his hands quickly by rubbing them.
Which skin surface will produce the most heat? D: palms
covered with lotion

False

We can even get rid of the A, B, C, D from the strings

34

ChatGPT Again

35

Summary

1. From Logistic Regression to Neural Networks

2. Learning Neural Networks

3. Neural Text Classifiers

4. Neural Networks: Tricks of the Trade

5. Example Applications

36

Reference

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009).
What is the best multi-stage architecture for object recognition?
In Proceedings of the 12th International Conference on Computer Vision, pages 2146–2153. IEEE.

Montavon, G., Orr, G., and Müller, K.-R. (2012).
Neural networks-tricks of the trade second edition.
Springer.

Plaut, D. C., Nowlan, S., and Hinton, G. (1986).
Experiments on learning by back propagation.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323(6088):533–536.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958.

37

	Overview
	From Logistic Regression to Neural Networks
	Learning Neural Networks
	Neural Text Classifiers
	Neural Networks: Tricks of the Trade
	Example Applications

