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Problem Definition



Case I: Sentiment Analysis

[Pang et al., 2002]
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Case II: Topic Classification

Example topics

▶ Business

▶ Arts

▶ Technology

▶ Sports

▶ · · ·
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Case III: Natural Language Inference (NLI)

NLI can be formulated as text classification problems – classifying the

relation between two texts

▶ Input:

▶ A premise (e.g., “Soccer game with multiple males playing”) and

▶ A hypothesis (e.g., “Some men are playing a sport”)

▶ Output: The relation between the premise and the hypothesis

(e.g., Entailment, Contradiction, and Neutral)
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Case IV: Multi-choice Question Answering

Picking an answer is equivalent to predict which one is the most

likely answer

▶ Context: “My name is Yangfeng Ji and I live in Charlottesville”
▶ Question: “Where do I live?”

▶ Candidate answers:

A. “Beĳing”

B. “Seattle”
C. “Charlottesville”
D. “London”

To use a classifier for question answering, what should be the input?

6



Case IV: Multi-choice Question Answering

Picking an answer is equivalent to predict which one is the most

likely answer

▶ Context: “My name is Yangfeng Ji and I live in Charlottesville”
▶ Question: “Where do I live?”

▶ Candidate answers:

A. “Beĳing”

B. “Seattle”
C. “Charlottesville”
D. “London”

To use a classifier for question answering, what should be the input?

6



General Setup

A formal formulation of classification problem

▶ Input: a text 𝒙
▶ Example: a product review on Amazon

▶ Output: 𝑦 ∈ Y, where Y is the predefined label set

▶ Example: Y= {Positive,Negative}

The pipeline of text classification:1

Text Numeric Vector 𝒙 Classifier Label 𝑦

1In this course, we use 𝒙 for both text and its representation with no distinction

7



General Setup

A formal formulation of classification problem

▶ Input: a text 𝒙
▶ Example: a product review on Amazon

▶ Output: 𝑦 ∈ Y, where Y is the predefined label set

▶ Example: Y= {Positive,Negative}

The pipeline of text classification:1

Text Numeric Vector 𝒙 Classifier Label 𝑦

1In this course, we use 𝒙 for both text and its representation with no distinction

7



Probabilistic Formulation

With the conditional probability 𝑃(𝑌 | 𝑿 ), the prediction on 𝑌 for a

given text 𝑿 = 𝒙 is

𝑦̂ = argmax

𝑦∈Y
𝑃(𝑌 = 𝑦 | 𝑿 = 𝒙) (1)

Or, for simplicity

𝑦̂ = argmax

𝑦∈Y
𝑃(𝑦 | 𝒙) (2)

In sklearn, this argmax is implemented by the predict function
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Key Questions

Recall

▶ The formulation defined in the previous slide

𝑦̂ = argmax

𝑦∈Y
𝑃(𝑌 = 𝑦 | 𝑿 = 𝒙) (3)

▶ The pipeline of text classification

Text Numeric Vector 𝒙 Classifier Label 𝑦

Building a text classifier is about answering the following two

questions

1. How to represent a text as 𝒙?

▶ Bag-of-words representation

2. How to estimate 𝑃(𝑦 | 𝒙)?

▶ Logistic regression classifiers

▶ Neural network classifiers (next lecture)
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Bag-of-Words Representation



Bag-of-Words Representation

Example Texts
Text 1: I love coffee.

Text 2: I don’t like tea.

Step I: convert a text into a collection of tokens (e.g., tokenization)

Tokenized Texts
Tokenized text 1: I love coffee

Tokenized text 2: I don t like tea

Step II: build a dictionary/vocabulary

Vocabulary
{I love coffee don t like tea}
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Bag-of-Words Representations

Step III: based on the vocab, convert each text into a numeric

representation as

Bag-of-Words Representations

I love coffee don t like tea

𝒙(1) = [1 1 1 0 0 0 0]
T

𝒙(2) = [1 0 0 1 1 1 1]
T

The pipeline of text classification:

Text Numeric Vector 𝒙 Classifier Category 𝑦

Bag-of-words

Representation
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Implementation

In sklearn, CountVectorizer implements all the three steps in one

function.
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Additional Steps of Building Vocab

1. Convert all characters to lowercase

UVa, UVA→ uva

Shall we always convert all words to lowercase?

Apple vs. apple

2. Map low frequency words to a special token ⟨unk⟩

Zipf’s law: freq(𝑤𝑡) ∝ 1/𝑟𝑡
where freq(𝑤𝑡) is the frequency of word 𝑤𝑡 and 𝑟𝑡 is the rank of

this word
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Information Embedded in BoW Representations

It is critical to keep in mind about what information is preserved in

bag-of-words representations:

▶ Keep:

▶ words in texts

▶ Lose:

▶ word order

I love coffee don t like tea

▶ sentence boundary

▶ sentence order

▶ · · ·
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Case Study: Sentiment Analysis



A Dummy Predictor

Consider the following toy example (adding one more example to

make it more interesting)

Tokenized Texts

Text 𝑿 Label 𝑌

Tokenized text 1 I love coffee Positive

Tokenized text 2 I don t like tea Negative

Tokenized text 3 I like coffee Positive

What is the simplest classifier that we can constructed based on this

“dataset”?

▶ Predict every text as Positive

▶ 66.7% prediction accuracy on this dataset2

2The evaluation of classifiers will be discussed in one of the future lectures.
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A Simple Predictor

Consider the following toy example, again

Tokenized Texts
Tokenized text 1: I love coffee

Tokenized text 2: I don t like tea

Tokenized text 3: I like coffee

What if we simply count the number of positive and negative words?

I love coffee don t like tea

𝒙(1) [1 1 1 0 0 0 0 ]
T

𝒘
Pos

[0 1 0 0 0 1 0 ]
T

𝒘
Neg

[0 0 0 1 0 0 0 ]
T

The prediction of sentiment polarity can be formulated as the

following

𝒘T
Pos

𝒙 = 1 > 𝒘T
Neg

𝒙 = 0 (4)
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Another Example

The limitation of word counting

I love coffee don t like tea

𝒙(2) [1 0 0 1 1 1 1 ]
T

𝒘Pos [0 1 0 0 0 1 0 ]
T

𝒘Neg [0 0 0 1 0 0 0 ]
T

▶ Different words should contribute differently. e.g., not vs.

dislike

▶ Sentiment word lists are often incomplete

Example II: Positive
Din Tai Fung, every time I go eat at anyone of the locations around the
King County area, I keep being reminded on why I have to keep coming
back to this restaurant. · · ·
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Logistic Regression



Linear Models

Directly modeling a linear classifier as

ℎ𝑦(𝒙) = 𝒘T
𝑦𝒙 + 𝑏𝑦 (5)

with

▶ 𝒙 ∈ ℕ𝑉
: vector, bag-of-words representation

▶ 𝒘𝑦 ∈ ℝ𝑉
: vector, classification weights associated with label 𝑦

▶ 𝑏𝑦 ∈ ℝ: scalar, label bias in the training set 𝑦

About Label Bias
Consider a case with highly-imbalanced examples, where we have

90 positive examples and 10 negative examples in the training set.

With

𝑏Pos > 𝑏Neg ,

a classifier can get 90% predictions correct without even resorting

the texts.

21
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Logistic Regression

Rewrite the linear decision function in the log probabilitic form

log𝑃(𝑦 | 𝒙) ∝ 𝒘T
𝑦𝒙 + 𝑏𝑦︸     ︷︷     ︸
ℎ𝑦 (𝒙)

(6)

or, the probabilistic form is

𝑃(𝑦 | 𝒙) ∝ exp(𝒘T
𝑦𝒙 + 𝑏𝑦) (7)

To make sure 𝑃(𝑦 | 𝒙) is a valid definition of probability, we need to

make sure

∑
𝑦 𝑃(𝑦 | 𝒙) = 1,

𝑃(𝑦 | 𝒙) =
exp(𝒘T

𝑦𝒙 + 𝑏𝑦)∑
𝑦′∈Yexp(𝒘T

𝑦′𝒙 + 𝑏𝑦′)
(8)
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Alternative Form

Rewriting 𝒙 and 𝒘 as

▶ 𝒙T = [𝑥1 , 𝑥2 , · · · , 𝑥𝑉 , 1]
▶ 𝒘T

𝑦 = [𝑤1 , 𝑤2 , · · · , 𝑤𝑉 , 𝑏𝑦]

allows us to have a more concise form

𝑃(𝑦 | 𝒙) =
exp(𝒘T

𝑦𝒙)∑
𝑦′∈Yexp(𝒘T

𝑦′𝒙)
(9)

Comments:

▶ exp(𝑎)∑
𝑎′ exp(𝑎′) is the softmax function

▶ This form works with any size of Y— it does not have to be a

binary classification problem.
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Binary Classifier

Assume Y= {neg, pos}, then the corresponding logistic regression

classifier with 𝑌 = Pos is

𝑃(𝑌 = Pos | 𝒙) = 1

1 + exp(−𝒘T𝒙)
(10)

where 𝒘 is the only parameter.

▶ 𝑃(𝑌 = Neg | 𝒙) = 1 − 𝑃(𝑌 = Pos | 𝒙)
▶ 1

1+exp(−𝑧) is the Sigmoid function

24
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Implementation

Both the generic version and the binary version are implemented in

the sklearn class: LogisticRegression

25



Two Questions on Building LR Models

... of building a logistic regression classifier

𝑃(𝑦 | 𝒙) =
exp(𝒘T

𝑦𝒙)∑
𝑦′∈Yexp(𝒘T

𝑦′𝒙)
(11)

▶ How to learn the parameters 𝑾 = {𝒘𝑦}𝑦∈Y?

▶ Can 𝒙 be better than the bag-of-words representations?

▶ Please revisit the CountVectorizer module

26
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Review: (Log)-likelihood Function

With a collection of training examples {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1

, the likelihood

function of {𝒘𝑦}𝑦∈Y is

𝐿(𝑾 ) =
𝑚∏
𝑖=1

𝑃(𝑦(𝑖) | 𝒙(𝑖)) (12)

and the log-likelihood function is

ℓ ({𝒘𝑦}) =
𝑚∑
𝑖=1

log𝑃(𝑦(𝑖) | 𝒙(𝑖)) (13)
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Log-likelihood Function of a LR Model

With the definition of a LR model

𝑃(𝑦 | 𝒙) =
exp(𝒘T

𝑦𝒙)∑
𝑦′∈Yexp(𝒘T

𝑦′𝒙)
(14)

the log-likelihood function is

ℓ (𝑾 ) =

𝑚∑
𝑖=1

log𝑃(𝑦(𝑖) | 𝒙(𝑖)) (15)

=

𝑚∑
𝑖=1

{
𝒘T

𝑦(𝑖)
𝒙(𝑖) − log

∑
𝑦′∈Y

exp(𝒘T
𝑦′𝒙
(𝑖))

}
(16)

Given the training examples {(𝒙(𝑖) , 𝑦(𝑖))}𝑚
𝑖=1

, ℓ (𝑾 ) is a function of

𝑾 = {𝒘𝑦}.
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Optimization with Gradient

MLE is equivalent to minimize the Negative Log-Likelihood (NLL) as

NLL(𝑾 ) = −ℓ (𝑾 )

=

𝑚∑
𝑖=1

{
−𝒘T

𝑦(𝑖)
𝒙(𝑖) + log

∑
𝑦′∈Y

exp(𝒘T
𝑦′𝒙)

}
then, the parameter 𝒘𝑦 associated with label 𝑦 can be updated as

𝒘𝑦 ← 𝒘𝑦 − 𝜂 ·
𝜕NLL({𝒘𝑦})

𝜕𝒘𝑦
, ∀𝑦 ∈ Y (17)

where 𝜂 is called learning rate.
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Optimization with Gradient (II)

Two questions answered by the update equation

(1) which direction?

(2) how far it should go?

𝒘𝑦 ← 𝒘𝑦 − 𝜂︸︷︷︸
(2)

·
𝜕NLL({𝒘𝑦})

𝜕𝒘𝑦︸           ︷︷           ︸
(1)

(18)

[Jurafsky and Martin, 2019]
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Training Procedure

Steps for parameter estimation, given the current parameter {𝒘𝑦}

1. Compute the derivative

𝜕NLL({𝒘𝑦})
𝜕𝒘𝑦

, ∀𝑦 ∈ Y

2. Update parameters with

𝒘𝑦 ← 𝒘𝑦 − 𝜂 ·
𝜕NLL({𝒘𝑦})

𝜕𝒘𝑦
, ∀𝑦 ∈ Y

3. If not done, retrun to step 1
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Procedure of Building a Classifier

Review: the pipeline of text classification:

Text Numeric Vector 𝒙 Classifier Category 𝑦

Bag-of-words Logistic

Representation Regression
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Overfitting and 𝐿2 Regularization



Overfitting: General Illustration

Three cases when building a classifier

34



Overfitting

In the demo code, we chose 𝜆 = 1

𝐶 = 0.001 to approximate the case

without regularization.

▶ Training accuracy: 99.89%

▶ Development accuracy: 52.21%
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Classification Weights when Overfitting

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

▶ negative: woody allen can write and deliver a one liner as

well as anybody .

▶ positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

36



Classification Weights when Overfitting

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

▶ negative: woody allen can write and deliver a one liner as

well as anybody .

▶ positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

36



Classification Weights when Overfitting

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

▶ negative: woody allen can write and deliver a one liner as

well as anybody .

▶ positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

36



𝐿2 Regularization

The commonly used regularization trick is the 𝐿2 regularization. For

that, we need to redefine the objective function of LR by adding an

additional item

Loss(𝑾 ) =
𝑚∑
𝑖=1

{
−𝒘T

𝑦(𝑖)
𝒙(𝑖) + log

∑
𝑦′∈Y

exp(𝒘T
𝑦′𝒙
(𝑖))

}
︸                                              ︷︷                                              ︸

NLL

+ 𝜆
2

·
∑
𝑦∈Y
∥𝒘𝑦 ∥2

2︸           ︷︷           ︸
𝐿2 reg

(19)

▶ 𝜆 is the regularization parameter

37



𝐿2 Regularization

The commonly used regularization trick is the 𝐿2 regularization. For

that, we need to redefine the objective function of LR by adding an

additional item

Loss(𝑾 ) =
𝑚∑
𝑖=1

{
−𝒘T

𝑦(𝑖)
𝒙(𝑖) + log

∑
𝑦′∈Y

exp(𝒘T
𝑦′𝒙
(𝑖))

}
︸                                              ︷︷                                              ︸

NLL

+ 𝜆
2

·
∑
𝑦∈Y
∥𝒘𝑦 ∥2

2︸           ︷︷           ︸
𝐿2 reg

(19)

▶ 𝜆 is the regularization parameter

37



𝐿2 Regularization in Gradient Descent

▶ The gradient of the loss function

𝜕Loss(𝑾 )
𝜕𝒘𝑦

=
𝜕NLL(𝑾 )

𝜕𝒘𝑦
+ 𝜆𝒘𝑦 (20)

▶ To minimize the loss, we need update the parameter as

𝒘𝑦 ← 𝒘𝑦 − 𝜂
(𝜕NLL(𝑾 )

𝜕𝒘𝑦
+ 𝜆𝒘𝑦

)
(21)

= (1 − 𝜂𝜆) ·𝒘𝑦 − 𝜂
𝜕NLL(𝑾 )

𝜕𝒘𝑦

▶ Depending on the strength (value) of 𝜆, the regularization term

tries to keep the parameter values close to 0, which to some

extent can help avoid overfitting
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Learning with Regularization

We chose 𝜆 = 1

𝐶 = 10
2

▶ Training accuracy: 62.54%

▶ Development accuracy: 63.17%
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Classification Weights with Regularization

With regularization, the classification weights make more sense to us

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

With Reg 0.16 0.36 -0.21 -0.057 -0.066 0.040

Regularization for Avoiding Overfitting
Reduce the correlation between class label and some noisy features.
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Side-by-Side Comparison

(a) Overfitting (b) A better model

A similar explanation can be applied to more advanced classifiers,

such as neural networks.
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