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Diffusion Processes
Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium
Thermodynamics. 2015

Yang et al. Diffusion Models: A Comprehensive Survey of Methods and
Applications. 2022
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Illustration
Diffusion models smoothly perturb data by adding noise, then reverse this
process to generate new data from noise.

Each denoising step in the reverse process typically requires estimating the
score function. 3



Forward Trajectory
Diffusion process:

π(y) = T  (y∣y ; β)π(y )dy∫ π
′ ′ ′

Diffusion kernel:

q(x ∣x ) =(t) (t−1) T  (x ∣x ; β  )π
(t) (t−1)

t

where  is the diffusion rateβ  t
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Binomial Diffusion Process
The forward trajectory is defined as

q(x ) =0…T q(x )  q(x ∣x )(0)

t=1

∏
T

(t) (t−1)

with

 with 

π(x ) =(T ) B(x ; 0.5)(T )

q(x ∣x ) =(t) (t−1) B(x ; (1 −(t) β  )x +t
(t−1) 0.5β  )t β =  

T−t+1
1
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Binomial Diffusion Process (II)
Consider a very simple example

Sample size: 1000 at each time step

q(x ) =(0) Bern(x ; 0.9)(0)

q(x ∣x ) =(t) (t−1) B(x ; (1 −(t) β  )x +t
(t−1) 0.5β  )t

β =  

T−t+1
1

T = 100

t = 0, 10, 50, 90, 98, 100 6



Binomial Diffusion Process (III)
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Gaussian Diffusion Process
The joint distribution is defined as

q(x ) =0…T q(x )  q(x ∣x )(0)

t=1

∏
T

(t) (t−1)

with

When , we have

q(x ) →(t) N (0, I)

q =(T ) N (x ; 0, I)(T )

q(x ∣x ) =(t) (t−1) N (x ;  x , β  I)(t) 1 − β  t
(t−1)

t

β  →t 1
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Gaussian Diffusion Process (II)
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Backward Trajectory
The central problem targetted by the backward trajectory is estimate the
distribution  given the whole (forward) diffusion process

q(x ) :(0,…,T ) x →(0) x →(1) ⋯ → x →(T−1) x(T )

Conceptually, we have

q(x ∣x , x ) =(t−1) (0,…,t−2) (t,…,T )

x(t−1)
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Backward Trajectory (II)
We use another distribution  to approximate the backward process

p(x ) =(T ) π(x )(T )

p(x ) =(0…T ) p(x )  p(x ∣x )(T )

t=1

∏
T

(t−1) (t)

where

p(x ∣x ) =(t−1) (t) N (x ; f  (x , t), f  (x , t))(t−1)
μ

(t)
Σ

(t)

p
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Training
Original objective function

The same trick has been used in variational inference
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Training (II)
Its variational lower bound 

When  is given (aka, the diffusion process is fixed), each
reverse diffusion step can be estimated independently

[Sohl-Dickstein et al., 2015]

K

q(x ∣x , x )(t−1) (t) (0)
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Illustration
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Linear Gaussian Systems
Bishop. Pattern Recognition and Machine Learning. 2006

Chapter 02
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Multivariate Gaussian
For -dimensional random vector , the multivariate Gaussian distribution is
defined as

N (x;μ, Σ) =   exp ( −
(2π)T/2

1
∣Σ∣1/2

1
 (x −

2
1

μ) Σ (x −⊤ −1 μ))

where  is the mean vector and  is the covariance matrix.

Sometimes, we use  instead of  for convenience.

T x

μ Σ

Λ = Σ−1 Σ
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Conditional Distribution
Consider the following

x =  ;μ =(
x  a

x  b
)  ; Σ =(

μ  a

μ  b
)   (

Σ  aa

Σ  ba

Σ  ab

Σ  bb
)

where 

The conditional distribution

p(x  ∣x  ) =a b N (x  ;μ  , Σ  )a a∣b a∣b

Σ  =ab Σ  ba
⊤

μ  =a∣b μ  +a Σ  Σ  (x  −ab bb
−1

b μ  )b
Σ  =a∣b Σ  −aa Σ  Σ  Σ  ab bb

−1
ba
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Marginal Distribution
The marginal distribution  is given by

p(x  ) =a p(x  , x  )dx  ∫ a b b

More explicitly, we have

p(x  ) =a N (x  ;μ  , Σ  )a a aa

x  a
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Illustration
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High-level Message
The marginal/conditional distribution of a multivariate Gaussian is still a
Gaussian

This property will be heavily exploited in the following section.
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Denoising Diffusion Model
Ho et al. Denoising Diffusion Probabilistic Models. 2020
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https://arxiv.org/abs/2006.11239


Diffusion Process, Revisited
Starting from , the diffusion process can be described as the following
joint distribution

q(x  , ⋯ , x  ∣x  ) =1 T 0  q(x  ∣x  )
t=1

∏
T

t t−1

with each component defined as

q(x  ∣x  ) =t t−1 N (x  ;  x  , β  I)t 1 − β  t t−1 t

q(x  )0
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Multivariate Gaussian
Given

q(x  ∣x  ) =t t−1 N (x  ;  x  , β  I)t 1 − β  t t−1 t

we have

q(x  ∣x  ) =t 0 N (x  ;  x  , (1 −t  αt 0  )I)αt

with

When  is sufficiently large, 

α  =t 1 − β  t

 =αt  α  ∏s=0
t

s

T q(x  ∣x  ) ≈t 0 N (x  ; 0, I)t
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Objective Function
Reconsider the following component in the objective function

D  (q(x ∣x , x )∥p  (x ∣x ))KL
(t−1) (t) (0)

θ
(t−1) (t)

: the posterior distribution  given the whole
diffusion process

: the approximation distribution to reverse the diffusion
process

q(x ∣x , x )(t−1) (t) (0) x(t−1)

p  (x ∣x )θ
(t−1) (t)
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Posterior Distribution
 again is a Gaussian distribution

q(x ∣x , x ) =(t−1) (t) (0) N (x ;   (x , x ),  I)(t−1) μ~t (t) (0) β
~

where

  (x , x ) =μ~t (t) (0)
 x +

1 −  αt

 β  
 αt−1 t (0)

 x
1 −  αt

 (1 −  )α  t αt−1 (t)

  =β
~
t  β  

1 −  αt

1 −  αt−1
t

[Ho et al., 2020]

q(x ∣x , x )(t−1) (t) (0)
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Approximation Distribution
In [Ho et al., 2020],  is defined as

p  (x ∣x ) =θ
(t−1) (t) N (x ;μ  (x , t), Σ  (x , t))(t−1)

θ
(t)

θ
(t)

with 

Minimize the KL divergence is reduced as

E  [  ∥   (x , x ) −q 2β  t

1
μ~t (t) (0) μ  (x , t)∥]θ

(t)

which is a score function

p  (x ∣x )θ
(t−1) (t)

Σ  (x , t) =θ
(t) β  It
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Further Discussion
Kreis et al. Denoising Diffusion-based Generative Modeling: Foundations
and Applications. 2022

Yang et al. Diffusion Models: A Comprehensive Survey of Methods and
Applications. 2022
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Thank You!
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