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Diffusion Processes

e Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium
Thermodynamics. 2015

e Yang et al. Diffusion Models: A Comprehensive Survey of Methods and
Applications. 2022


https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2209.00796

lllustration

Diffusion models smoothly perturb data by adding noise, then reverse this
process to generate new data from noise.
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Each denoising step in the reverse process typically requires estimating the
score function.



Forward Trajectory
Diffusion process:
w(y) = [ Tly's O)n()dy

Diffusion kernel:
q(x(t)|x(t—1)) A Tw(a:(t)\a:(t_l); B;)

where (; is the diffusion rate



Binomial Diffusion Process

The forward trajectory is defined as
T

g(z” ") = q(*) ] [ a(=]2"V)

t=1
with
e (21 = B(z7);0.5)
o g(zW]zD) = B(z®; (1 — By)zY + 0.58,) with B = -

T—t+1



Binomial Diffusion Process (ll)

Consider a very simple example
e ¢(z\9) = Bern(z'?;0.9)
° q(a;(t)‘aj(t_l)) p— B(aj(t)7 (]_ — /Bt)aj(t_l) _|_ 05/Bt)

. 8=

T—t+1
« T'=100

e Sample size: 1000 at each time step
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Binomial Diffusion Process (lll)
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Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every Sth bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which 1s then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.



Gaussian Diffusion Process

The joint distribution is defined as

gz ") = q(=) ] [ ¢(=" =" V)

t=1
with
e ¢T) = N (2(D);0, 1)
+ q(zV]z" V) = N(2); y1 = BV, B 1)

When 8; — 1, we have

g(z") — N(0,1)



Gaussian Diffusion Process (ll)
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Backward Trajectory

The central problem targetted by the backward trajectory is estimate the

distribution z(*~1) given the whole (forward) diffusion process

T-1) T)

g(z® T 20 5 2 5 oo g o

Conceptually, we have
q(ZE(t_l) |.CU(O" : .,t—2), CB(t" : .,T)) _
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Backward Trajectory (ll)

We use another distribution p to approximate the backward process

p(z") = (2"
T
p(z 1) =p") || p(a" =)
t=1

where

(e V]z®) = N(@"Y; f.(2Y, 1), fs (2", 1))
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Training

Original objective function

I — / ax(©) g (X(m) log (Xm))
_ / ix0q (x©).

(x(71 |x(0)

log T T P
P (X( )) thl q(x(t)|x(t—1))

The same trick has been used in variational inference
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Training (ll)

Its variational lower bound K

T
K=-Y / dx© dx g (Xm)’xu)) .
t=2
Dxr (q (x(t_1)|x(t), x<0>) ‘ ‘p (X(t_1)|x(t)))
+H, (X(T)]X(O)) _H, (X<1> |X<0>) _H, (X<T>) |

When g(zD]z®) £(9) is given (aka, the diffusion process is fixed), each
reverse diffusion step can be estimated independently

[Sohl-Dickstein et al., 2015]
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lllustration
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Linear Gaussian Systems

e Bishop. Pattern Recognition and Machine Learning. 2006
o Chapter 02
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file:///home/yangfeng/Work/Projects/aml-course-slides/slides/lec13-diffusion.md

Multivariate Gaussian

For T'-dimensional random vector x, the multivariate Gaussian distribution is

defined as

N ) = G s @ (— 5@ =027 @ =)

where p is the mean vector and 2. is the covariance matrix.

Sometimes, we use A = Y~ Linstead of ¥ for convenience.
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Conditional Distribution

Consider the following
17 Ha -
aj p— ° p— ° E p—
(xb)’u (#b)’ (21)&
where X, = ZbTa
The conditional distribution
p(xo|zy) = N (243 Halb) 2a\b)

o Loy = Mo+ ZapXpy (T5 — 1p)
¢ Ea]b — Eaa — Eabz&)l Eba,
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Marginal Distribution

The marginal distribution x, is given by

p(za) = /P(xaamb)d%

More explicitly, we have
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lllustration
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High-level Message

The marginal/conditional distribution of a multivariate Gaussian is still a
Gaussian

e This property will be heavily exploited in the following section.
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Denoising Diffusion Model

e Ho et al. Denoising Diffusion Probabilistic Models. 2020
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https://arxiv.org/abs/2006.11239

Diffusion Process, Revisited

Starting from g(xg ), the diffusion process can be described as the following
joint distribution

T

Q(mla T ,CBT|$0) y HQ(wt|xt—1)

t=1

with each component defined as

(«’L’t|$t 1 $ta \/1 — BiTi—_1, 515[)
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Multivariate Gaussian

Given
q(zi|zi-1) = N (x5 /1 — Biwy1, Bil)
we have
q(zt|z0) = N (@4; Voo, (1 — o)1)
with
ey =1

e @ = [
« When T is sufficiently large, g(z¢|zo) ~ N (z4; 0, I)
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Objective Function

Reconsider the following component in the objective function

Dics (g Ve, 20) [pa(a D [2))

- Q(Cﬂ(t_l) \w(t), :13(0)): the posterior distribution 2 (1)

diffusion process

given the whole

e po(zD|z®)): the approximation distribution to reverse the diffusion
process
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Posterior Distribution

q(ztV]z® 2(9)) again is a Gaussian distribution
q(w(t—l)‘x(t)’w(())) = N (z (t— 1)”ut( () (0))751)

where
ﬁt(x(t), 17(0)) V ot 1515 | Vv & t(]- . at_l){l’,‘(t)
1 — Oﬁt 1 — at
~ 1 — oy
=)
1 — 87

[Ho et al., 2020]
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Approximation Distribution

In [Ho et al., 2020], pg (=1 \w(t)) is defined as
with Xy (2®), t) = B,

Minimize the KL divergence is reduced as

By (e ®, 20) — o, )]

254

which is a score function
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Further Discussion

e Kreis et al. Denoising Diffusion-based Generative Modeling: Foundations
and Applications. 2022

e Yang et al. Diffusion Models: A Comprehensive Survey of Methods and
Applications. 2022
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https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/abs/2209.00796

Thank You!
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