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A Quick Review
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Generative Modeling
This lecture focuses on the discussion in the following form

prior: 

generation model: 

where  is a deep neural network and  is an exponential
family with parameter .

For example, Gaussian distribution, with 

z ∼ p  (z)θ

x∣z ∼ Expfam(x∣d  (z))θ

d  (z)θ Expfam(x∣η)
η

η = {μ, σ }2
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Posterior Inference
Given , infer the posterior distribution of 

p  (z∣x) =θ  

p  (x)θ

p  (z)p  (x∣z)θ θ

with

p(x) = p  (x∣z)p  (z)dz∫ θ θ

In practice, we often use amortized inference, which use a variational
distribution  to approximate 

When  is defined on a neural network, it is also called inference network or
recognition network.

x z

q  (z∣x)ϕ p  (z∣x)θ

q  ϕ
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Autoencoder
Reference

Goodfellow et al. Deep Learning. 2016
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Autoencoder

Encoder : mapping input  to a latent representation 

Decoder : mapping latent representation  back to the input
space as 

Training an auto-encoder by optimize the objective function defined on 
and , such as

L(x, g(f(x))) = ∥x − g(f(x))∥  2
2

f : x → h x h

g : h → r h

x̂

x

r
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Denoising Autoencoder
Improve the generalization power of autoencoders by adding noise to
inputs

L(x, g(f( ))x~

 is a copy of  that has been corrupted by some form of noisex~ x
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Learning Denoising Autoencoder

It improve the encoder's representation power, but cannot do generation
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VAE Basics
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Generative Models
A VAE defines a generative model

p  (z, x) =θ p  (z)p  (x∣z)θ θ

The generation procedure can be formulated as

Sample a latent variable 

Generate an observation based on , 

z ∼ p  (z)θ

z x ∼ p  (x∣z)θ
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Example
Consider a binary image

p  (x∣z) =θ  Ber(x  ∣σ(d  (z)))
d=1

∏
D

d θ

where

 is a neural network model

 is a Sigmoid function

 is a Bernoulli distribution with parameter 

d  (⋅)θ

σ(⋅)

Ber(x  ∣σ(d  (z))d θ σ(d  (z))θ
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Recognition Network
In practice, instead of sampling from a prior distribution , we prefer to
sample from  if possible, because it offers a reasonable starting
point.

Amortized inference offers us an approximation of 

q  (z∣x) =ϕ N (z;μ, diag(exp(ℓ)))

with an encoder network

(μ, ℓ) = e (x)ϕ

p(z)
p  (z∣x)θ

p  (z∣x)θ
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Illustration
The illustration of a VAE
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Evidence Lower Bound
Starting from the evidence 

log p  (x) =θ log{ p  (x, z)dz} =∫ θ log{ q  (z∣x)  dz}∫ ϕ
q  (z∣x)ϕ

p  (x, z)θ

With the Jensen's inequality, we have

log p  (x) ≥θ q  (z∣x) log  dz =∫ ϕ
q (z∣x)ϕ

p  (x, z)θ
q  (z∣x) log  dz∫ ϕ

q  (z∣x)ϕ

p  (x∣z)p  (z)θ θ

Therefore,

log p  (x) ≥θ E  [log p  (x∣z)] −q θ KL[q  (z∣x)∥p  (z)]ϕ θ

log p  (x)θ
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Evidence Lower Bound (II)
Given 

log p  (x) ≥θ E  [log p  (x∣z)] −q θ KL[q  (z∣x)∥p  (z)]ϕ θ

: reconstruction loss

: similarity between the variational distribution and
the prior

x

E  [log p  (x∣z)]q θ

KL[q  (z∣x)∥p  (z)]ϕ θ
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Evaluating the ELBo
If both  and  are Gaussian distributions

There is a closed-form solution for 

 is intractable, and can only be approximated with Monte
Carlo methods

E  [log p  (x, z)] ≈q θ   log p  (x∣z  )
S

1

s=1

∑
S

θ s

where 

q  (z∣x)ϕ p  (z)θ

KL[q  (z∣x)∥p  (z)]ϕ θ

E  [log p  (x∣z)]q θ

z  ∼s q  (z∣x)ϕ
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Learning VAE (Conceptually)
Conceptually, learning VAE is basically a variational EM algorithm, iterating
between  and  with the following objective

E  [log p  (x∣z)] −q θ KL[q  (z∣x)∥p  (z)]ϕ θ

Update : update the decoder to have a better generation model

Update : update the encoder to have an informative latent space

θ ϕ

θ

ϕ
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Learning VAE (In Practice)
The reparameterization trick: for a Gaussian random variable , we can
reformulate the sampling

z ∼ q  (z∣x) =ϕ N (z;μ(x), σ (x))2

as

z = μ(x) + σ(x) ⋅ ε

where 

z

ε ∼ N (0, I)
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Reparameterization Trick
It reduce the randomness in the back-propagation algorithm
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Training VAE with Mini-batches

[Kingma and Welling, 2014]
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Comparison: Reconstruction
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Comparison: Generation
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Theoretical and Empirical Analysis
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-VAE

By relaxing the original objective function, we can get a generalized version of
VAE called -VAE

E  [log p  (x∣z)] −q θ β ⋅ KL[q  (z∣x)∥p  (z)]ϕ θ

: standard VAE

: forcing each  to be similar to 
Furthermore, defining

q  (z∣x) =ϕ  q  (z  ∣x)
k=1

∏
K

ϕ k

then minimizing the KL term will lead to disentangled representations

β

β

β = 1.0
β ≥ 1.0 q  (z∣x)ϕ p  (z)θ
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Examples

[Higgins et al., 2017] 25



Conceptual Framework
Consider the following lower bound

log p  (x) ≥θ E  [log p  (x∣z)] −q θ βKL[q  (z∣x)∥p  (z)]ϕ θ

Calculating the integral of  on both side, we have

− p  (x) log p  (x)dx ≤∫ θ θ − p  (x)E  [log p  (x∣z)]dx +∫ θ q θ β KL[q  (z∣x)∥p  (z)]dx∫ ϕ θ

Rewrite it as

H ≤ D + R

x
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Conceptual Framework (II)
Data entropy: the intrinsic data uncertainty

H = − p  (x) log p  (x)dx∫ θ θ

Distortion: the reconstruction loss by using the approximation encoder 

D = − p  (x)E  [log p  (x∣z)]dx∫ θ q θ

Rate: the average KL divergence

R = KL[q  (z∣x)∥p  (z)]dx∫ ϕ θ

q  (z∣x)ϕ
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The RD Plane
In the following figure, consider  as  and  as 

Different distributions can give the same lower bound

m(z) p  (z)θ d(x∣z) p  (x∣z)θ
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Case Study: About Disentangled
Representations

[Locatello et al., 2019]
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Thank You!

30


