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A Quick Review



Generative Modeling

This lecture focuses on the discussion in the following form
e prior: z ~ py(2)
e generation model: x|z ~ Expfam(x|dy(z))

where dy(z) is a deep neural network and Expfam(x|n) is an exponential
family with parameter 7.

» For example, Gaussian distribution, with n = {u, 0}



Posterior Inference

Given x, infer the posterior distribution of z
po(2)po(z|2)
po(z)

po(2|z) =

with
p(z) = / py(z|2)pe(2)dz

In practice, we often use amortized inference, which use a variational
distribution g4 (z|z) to approximate pyg(z|x)
When g, Is defined on a neural network, it is also called inference network or

recognition network.



Autoencoder

Reference

e Goodfellow et al. Deep Learning. 2016



Autoencoder

e Encoder f : @ — h: mapping input x to a latent representation A
e Decoder g : h — r: mapping latent representation h back to the input
space as I

e Training an auto-encoder by optimize the objective function defined on x
and r, such as

L(z,g(f(2))) = |z — g(f(z))ll2



Denoising Autoencoder

e Improve the generalization power of autoencoders by adding noise to
Inputs

L(z,9(f(z))

e X is a copy of x that has been corrupted by some form of noise




Learning Denoising Autoencoder

It improve the encoder's representation power, but cannot do generation



VAE Basics



Generative Models

A VAE defines a generative model
Po(2; ) = po(2)pe(z|2)
The generation procedure can be formulated as

e Sample a latent variable z ~ pg(2)

e Generate an observation based on z, © ~ py(z|z)
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Example

Consider a binary image

po(x|2) = HBer (z4|o(dg(2)))

d=1
where

e dy(-) is a neural network model
e o(-) is a Sigmoid function

« Ber(z4|o(dy(2)) is a Bernoulli distribution with parameter o (dg(z))
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Recognition Network

e In practice, instead of sampling from a prior distribution p(z) we prefer to
sample from py(z|x) if possible, because it offers a reasonable starting
point.

« Amortized inference offers us an approximation of py(z|x)

44(z|z) = N (z; p, diag(exp(£)))

with an encoder network

(1, £) = eg()
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lHlustration

The illustration of a VAE

q(z|x)

p(z)

p(x[z)
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Evidence Lower Bound

Starting from the evidence log pg( )

po(x, 2)

log pg (T log{/pg x,z)dz} = log{/% z|z)

With the Jensen's inequality, we have

dz}

qs(2|)

(z|2)po(2) 7

log pg(x) Z/q¢(z\w)lo ZZ((Z‘x))dz—/qqs(z\m)log bo

Therefore,

log pg(z) > Eq|log po(z|2)] — KL[gy(2|)||pe(2

qs(2|)

)
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Evidence Lower Bound (ll)

Given &

log po(z) > E,|log pe(z|2)] — KL[gy(2|2)||ps(2)]

« E,|log pg(z|2)]: reconstruction loss

e KL|gy(2|z)||po(2)]: similarity between the variational distribution and
the prior
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Evaluating the ELBo

If both g4 (z|z) and pg(2) are Gaussian distributions

e There is a closed-form solution for KL|g,(2|x)||pa(2)]

« E,|log pg(x|z)] is intractable, and can only be approximated with Monte
Carlo methods

E,|logpo(z, 2)| ~ Zlogpg (|zs)

where 25 ~ gy(z|x)
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Learning VAE (Conceptually)

Conceptually, learning VAE is basically a variational EM algorithm, iterating
between 0 and ¢ with the following objective

E,[log ps(z|2)] — KL|gg(2|x) s (2)]

e Update 6: update the decoder to have a better generation model

o Update ¢: update the encoder to have an informative latent space
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Learning VAE (In Practice)

The reparameterization trick: for a Gaussian random variable z, we can
reformulate the sampling

z ~ gg(2]z) = N(z; p(z), 0% (2))
z=plz)+o(z)- €
where € ~ N (0, I)
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Reparameterization Trick

It reduce the randomness in the back-propagation algorithm

Original form

f

~ qg(z|x)

Backprop

l

f
T

V.t z =gloxe)
T

o g e

: Deterministic node

. : Random node

— : Evaluation of f

g . Differentiation of f
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Training VAE with Mini-batches

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

6, ¢ < Initialize parameters

repeat
XM + Random minibatch of M datapoints (drawn from full dataset)
e + Random samples from noise distribution p(€)

g Ve,pr‘M (0, @; XM €) (Gradients of minibatch estimator (8))
0, ¢ + Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])

until convergence of parameters (6, ¢)
return 0, ¢

[Kingma and Welling, 2014]
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Comparison: Reconstruction

Figure 21.4: Illustration of image reconstruction using (V)AEs trained and applied to CelebA. Row 1:
Original images. Row 2: Deterministic autoencoder. Row 8: B-VAE with 8 = 0.5. Row 4: VAE (with 3 =1).

Generated by celeba_vae_ae_ comparison.ipynb.
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Comparison: Generation

Figure 21.3: Illustration of unconditional image generation using (V)AEs trained on CelebA. Row 1:

Deterministic autoencoder. Row 2: B-VAE with f = 0.5. Row 3: VAE (with B = 1). Generated by
celeba_vae ae comparison.ipynb.
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Theoretical and Empirical Analysis
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3-VAE

By relaxing the original objective function, we can get a generalized version of
VAE called B-VAE

Eq|log pe(z|2)] — B - KL|gy(2|z)||ps(2)]
e 0 = 1.0: standard VAE

e B > 1.0: forcing each g4 (2|z) to be similar to py(z)
o Furthermore, defining

gs(2|x) = Hq¢ 2| )
24

then minimizing the KL term will lead to disentangled representations



Examples

[Higgins et al., 2017]
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Conceptual Framework

Consider the following lower bound

log po () > E,[log ps(a]z)] — BKLIgs([)|ps (=)

Calculating the integral of 2 on both side, we have

—/pe(w) log po(z)dz < —/Pe(x)Eq[logpe(ﬂf\Z)]de+5/KL[qcﬁ(ZlfB)Hpe(Z)]dw
Rewrite it as

H<D-+R
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Conceptual Framework (ll)

e Data entropy: the intrinsic data uncertainty

H—— / p(z) log po () da

e Distortion: the reconstruction loss by using the approximation encoder
gy (2|T)

D~ [ po(a)Ellog po(al2)]dz

e Rate: the average KL divergence

R= / KL{go(2l) |po (2)]da
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The RD Plane

In the following figure, consider m(z) as py(z) and d(x|z) as pg(z|z)

Different distributions can give the same lower bound
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Case Study: About Disentangled
Representations

Theorem 1. For d > 1, let z ~ P denote any distribution
which admits a density p(z) = Hle p(z;). Then, there
exists an infinite family of bijective functions f : supp(z) —

supp(z) such that 6f : 75 0 almost everywhere for all

v and j (ie., z and f ( ) are completely entangled) and
P(z <u) = P(f(z) <u)forall u € supp(z) (i.e., they
have the same marginal distribution).

[Locatello et al., 2019]



Thank You!
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