CS 8501 Advanced Topics in Machine Learning

Lecture 10: Monte Carlo Methods (II)

Yangfeng Ji Information and Language Processing Lab Department of Computer Science University of Virginia https://yangfengji.net/

Markov Chains

Reference

- Andrieu et al. An Introduction to MCMC for Machine Learning. 2003
- Holmes-Cerfon. Lecture 3 Markov Chains (II). Spring 2019

Markov Chain Monte Carlo

- Monte Carlo methods
 - Use samples to approximate a probability distribution
- Markov Chain Monte Carlo is a strategy for generating samples $\{x_t\}$ while exploring the sampling space using a Markov chain mechanism.
- The mechanism is constructed so that
 - the chain spends more time in the most important regions.
 - \circ the samples mimic samples drawn from the target distribution p(x)

Markov Chain

A Markov chain defined on a finite state space $\mathcal{S} = \{s_1, \ldots, s_K\}$ is described as

$$p(x_t | x_{t-1}, \dots, x_1) = T(x_t | x_{t-1})$$

where $T(x_t | x_{t-1})$ is a K imes K matrix

- $p(x_t = s_k | x_{t-1} = s_{k'})$ describe the transition probability from $x_{t-1} = s_{k'}$ to $x_t = s_k$
- $ullet \sum_{a_k} p(x_t = a_k | x_{t-1}) = 1$

Homogeneous Markov Chain

A Markov chain is homogeneous if

$$T = T(x_t | x_{t-1})$$

remains invariant for all t.

In this case, the evolution of the chain depends solely on

- current state of the chain, and
- a fixed transition matrix

Example

Transition matrix: row x_{t-1} ; column x_t

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

Example (II)

Consider the following initial state probability $p(x_1)$, $\pi = [1.0, 0, 0]$, then

 $ullet p(x_2)$

$$p(x_2)=\sum_{x_1}p(x_1)p(x_2|x_1)=\pi\cdot T$$

•
$$p(x_{100})$$

 $p(x_{100}) = \pi \cdot T^{100-1} = [0.2213, 0.4098, 0.3688]$

Example (III)

With another initial state probability $\pi' = [0, 1.0, 0]$, we still have

$$p(x_{100}) = \pi' \cdot T^{100-1} = [0.2213, 0.4098, 0.3688]$$

- In fact, this is true for any initial probability
- And

$$p(x) = \left[0.2213, 0.4098, 0.3688
ight]$$

is the stationary distribution of this Markov chain

• Mathematically, the stationary distribution π satisfies

$$\pi P = \pi$$

Markov Chain (Cont.)

A Markov chain has a stationary distribution, as long as T obeys

- Irreducibility: from any state, there is a positive probability of visiting all other states
- Aperiodicity: the state transition should not be trapped in cycles

The Detailed Balance Condition

A sufficient (but not necessary) condition to ensure p(x) to be an stationary distribution is the following detailed balance condition

$$p(x_{t-1})T(x_t|x_{t-1}) = p(x_t)T(x_{t-1}|x_t)$$

- This is the key of MCMC
- Comparing to the definition of stationary distribution, this is defined on each edge of a transition graph
- An example of detailed balance graph

$$s_1 \rightleftharpoons s_2 \rightleftharpoons s_3$$

Examples

The previous example does not satisfy the detailed balance condition

A simple example that satisfies the detailed balance condition

Continuous State Space

In continuous state spaces, the transition matrix T becomes an integral kernel $K, \end{tabular}$

$$p(x_t) = \int p(x_{t-1}) K(x_t, x_{t-1}) dx_{t-1}$$

Consider $K(x_t, x_{t-1})$ as a conditional probability $p(x_t | x_{t-1})$ would be easier

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm

1. Initialize x_0

2. For t=0 to T

- \circ Sample $u \sim U[0,1]$
- $egin{array}{ll} &\circ ext{ Sample } ilde{x} \sim q(ilde{x}|x_0) & \textit{// proposal distribution} \ &\circ ext{ if } u < \min\{1, rac{p(ilde{x})q(x_t| ilde{x})}{p(x_t)q(ilde{x}|x_t)}\} \end{array}$

$$x_{t+1} \leftarrow ilde{x}$$

else

$$x_{t+1} \leftarrow x_t$$

Proposal Distribution

In the MH algorithm, the proposal distribution is defined as

 $q(ilde{x}|x_t)$

where x_t is the sample from the current time step

- $q(ilde{x}|x_t)$ is the transition matrix/kernel function of the Markov chain
- There is a dependence between x_t and $ilde{x}$

Acceptance Probability

The acceptance probability is defined as

$$A(x_t, ilde{x}) = \min\{1, rac{p(ilde{x})q(x_t| ilde{x})}{p(x_t)q(ilde{x}|x_t)}\}$$

To understand the acceptance probability, let's consider a simple proposal function

$$q(ilde{x}|x_t) = \mathcal{N}(ilde{x};x_t,I) \propto \exp(-\| ilde{x}-x_t\|_2^2)$$

Symmetric Proposal Distribution

When the proposal distribution is symmetric, the acceptance probability is reduced as

$$A(x_t, ilde{x}) = \min\{1,rac{p(ilde{x})}{p(x_t)}\}$$

Therefore, the algorithm will

- always accept a sample $ilde{x}$, when $p(ilde{x}) \geq p(x_t)$
- accept a sample $ilde{x}$ by chance, when $p(ilde{x}) < p(x_t)$

Asymmetric Proposal Distribution

For asymmetric proposal distribution, we have

$$A(x_t, ilde{x}) = \min\{1, rac{p(ilde{x})/q(ilde{x}|x_t)}{p(x_t)/q(x_t| ilde{x})}\}$$

This will compensate the bias/preference in the transition matrix/kernel function

Why MH Works

The transition matrix of the MH algorithm is

$$p(ilde{x}|x_t) = \left\{egin{array}{ll} q(ilde{x}|x_t)A(ilde{x},x_t) & ext{if } ilde{x}
eq x_t \ q(x_t|x_t) + \sum_{ ilde{x}
eq x_t} q(ilde{x}|x_t)(1-A(ilde{x},x_t)) & ext{otherwise} \end{array}
ight.$$

[Marphy 2023, sec 12.2.2] gives an excellent explanation of this formula

- $p(ilde{x}|x_t)$ defines a Markov chain that satisfies the detailed balance condition
- p(x) is its stationary distribution

Proposal Distribution: RWM algorithm

The random-walk Metropolis algorithm is the MH algorithm with the proposal distribution

$$q(ilde{x}|x_t) = \mathcal{N}(ilde{x};x_t, au^2 I)$$

Comparison: MH vs. Accept-Reject

Proposal distributions

- For MH: $q(ilde{x}|x) = \mathcal{N}(ilde{x};x,10^2)$
- For accept-reject: $q(ilde{x}) = \mathcal{N}(ilde{x}, 0, 10^2)$

Comparison: MH with Different Proposals

Proposal distributions:

- Left: $q(ilde{x}|x) = \mathcal{N}(ilde{x};x,1^2)$
- Right: $q(ilde{x}|x) = \mathcal{N}(ilde{x};x,50^2)$

Gibbs Sampling

- Using $x^{(t)}$ to represent the sample at time step t

Gibbs Sampling

Consider a three-dimensional distribution $p(x_1, x_2, x_3)$, the sampling procedure for time step t+1

$$egin{aligned} & \cdot x_1^{(t+1)} \sim p(x_1 | x_2^{(t)}, x_3^{(t)}) \ & \cdot x_2^{(t+1)} \sim p(x_2 | x_1^{(t+1)}, x_3^{(t)}) \ & \cdot x_3^{(t+1)} \sim p(x_3 | x_1^{(t+1)}, x_2^{(t+1)}) \end{aligned}$$

Return $(x_1^{(t+1)}, x_2^{(t+1)}, x_3^{(t+1)})$ as the sample at time step t+1

Sampling from Conditional Distributions

For example

$$x_1^{(t+1)} \sim p(x_1 | x_2^{(t)}, x_3^{(t)})$$

With the sampling algorithm discussed in the last lecture, we can actually sample from the unnormalized distribution, by fixing x_2 and x_3 in this case

$$x_1^{(t+1)} \sim p(x_1, x_2^{(t)}, x_3^{(t)}) \propto p(x_1 | x_2^{(t)}, x_3^{(t)})$$

Demo

A demo with a multimodal distribution

Gibbs Sampling as a Special Case of MH

• The proposal distribution as shown in the previous page

$$q_i(ilde{x}|x) = p(ilde{x}_i|x_{-i})\mathbb{I}(ilde{x}_{-i}=x_{-i})$$

• The acceptance rate is 100%

$$\alpha = \frac{p(\mathbf{x}')q_i(\mathbf{x}|\mathbf{x}')}{p(\mathbf{x})q_i(\mathbf{x}'|\mathbf{x})} = \frac{p(x'_i|\mathbf{x}'_{-i})p(\mathbf{x}'_{-i})p(x_i|\mathbf{x}'_{-i})}{p(x_i|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x'_i|\mathbf{x}_{-i})} = \frac{p(x'_i|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(x_i|\mathbf{x}_{-i})}{p(x_i|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\mathbf{x}'_i|\mathbf{x}_{-i})} = 1$$

Gibbs Sampling on Ising Models

$$p(x) \propto \prod_{(i,j) \in E} \psi_{ij}(x_i,x_j; heta)$$

Explore the conditional independence for parallel sampling

Example

Figure 12.3: Example of image denoising using Gibbs sampling. We use an Ising prior with J = 1 and a Gaussian noise model with $\sigma = 2$. (a) Sample from the posterior after one sweep over the image. (b) Sample after 5 sweeps. (c) Posterior mean, computed by averaging over 15 sweeps. Compare to Figure 10.3 which shows the results of mean field inference. Generated by ising image denoise demo.ipynb.

Thank You!