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Markov Chain Monte Carlo
Monte Carlo methods

Use samples to approximate a probability distribution

Markov Chain Monte Carlo is a strategy for generating samples 
while exploring the sampling space using a Markov chain mechanism.

The mechanism is constructed so that
the chain spends more time in the most important regions.

the samples mimic samples drawn from the target distribution 

{x ​}t

p(x)
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Markov Chain
A Markov chain defined on a finite state space  is
described as

p(x ​∣x ​, … , x ​) =t t−1 1 T (x ​∣x ​)t t−1

where  is a  matrix

 describe the transition probability from 
 to 

S = {s ​, … , s ​}1 K

T (x ​∣x ​)t t−1 K × K

p(x ​ =t s ​∣x ​ =k t−1 s ​)k′ x ​ =t−1

s ​k′ x ​ =t s ​k

​ p(x ​ =∑a ​k
t a ​∣x ​) =k t−1 1
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Homogeneous Markov Chain
A Markov chain is homogeneous if

T = T (x ​∣x ​)t t−1

remains invariant for all .

In this case, the evolution of the chain depends solely on

current state of the chain, and

a fixed transition matrix

t
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Example

Transition matrix: row ; column 

T = ​ ​ ​ ​ ​

⎣

⎡ 0
0

0.6

1
0.1
0.4

0
0.9
0 ⎦

⎤

x ​t−1 x ​t
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Example (II)
Consider the following initial state probability , , then

p(x ​) =2 ​p(x ​)p(x ​∣x ​) =
x ​1

∑ 1 2 1 π ⋅ T

p(x ​) =100 π ⋅ T =100−1 [0.2213, 0.4098, 0.3688]

p(x ​)1 π = [1.0, 0, 0]

p(x ​)2

p(x ​)100
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Example (III)
With another initial state probability , we still have

p(x ​) =100 π ⋅′ T =100−1 [0.2213, 0.4098, 0.3688]

In fact, this is true for any initial probability

And

p(x) = [0.2213, 0.4098, 0.3688]

is the stationary distribution of this Markov chain

Mathematically, the stationary distribution  satisfies

πP = π

π =′ [0, 1.0, 0]

π
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Markov Chain (Cont.)
A Markov chain has a stationary distribution, as long as  obeys

Irreducibility: from any state, there is a positive probability of visiting all
other states

Aperiodicity: the state transition should not be trapped in cycles

T
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The Detailed Balance Condition
A sufficient (but not necessary) condition to ensure  to be an stationary
distribution is the following detailed balance condition

p(x ​)T (x ​∣x ​) =t−1 t t−1 p(x ​)T (x ​∣x ​)t t−1 t

This is the key of MCMC

Comparing to the definition of stationary distribution, this is defined on
each edge of a transition graph

An example of detailed balance graph

s ​ ⇌1 s ​ ⇌2 s ​3

p(x)

10



Examples
The previous example does not satisfy the detailed balance condition

A simple example that satisfies the detailed balance condition
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Continuous State Space
In continuous state spaces, the transition matrix  becomes an integral kernel 

,

p(x ​) =t p(x ​)K(x ​, x ​)dx ​∫ t−1 t t−1 t−1

Consider  as a conditional probability  would be easier

T

K

K(x ​, x ​)t t−1 p(x ​∣x ​)t t−1
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Metropolis-Hastings Algorithm
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Metropolis-Hastings Algorithm
1. Initialize 

2. For  to 
Sample 

Sample  // proposal distribution

if 

x ​ ←t+1 x~

else

x ​ ←t+1 x ​t

x0

t = 0 T

u ∼ U [0, 1]
∼x~ q( ∣x ​)x~ 0

u < min{1, ​ }
p(x ​)q( ∣x )t x~ t

p( )q(x ​∣ )x~ t x
~
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Proposal Distribution
In the MH algorithm, the proposal distribution is defined as

q( ∣x ​)x~ t

where  is the sample from the current time step

 is the transition matrix/kernel function of the Markov chain

There is a dependence between  and 

x ​t

q( ∣x ​)x~ t

x ​t x~

15



Acceptance Probability
The acceptance probability is defined as

A(x ​, ) =t x
~ min{1, ​ }

p(x ​)q( ∣x ​)t x~ t

p( )q(x ​∣ )x~ t x
~

To understand the acceptance probability, let's consider a simple proposal
function

q( ∣x ​) =x~ t N ( ; x ​, I) ∝x~ t exp(−∥ −x~ x ​∥ ​)t 2
2
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Symmetric Proposal Distribution
When the proposal distribution is symmetric, the acceptance probability is
reduced as

A(x ​, ) =t x
~ min{1, ​ }

p(x ​)t

p( )x~

Therefore, the algorithm will

always accept a sample , when 

accept a sample  by chance, when 

x~ p( ) ≥x~ p(x ​)t
x~ p( ) <x~ p(x ​)t
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Asymmetric Proposal Distribution
For asymmetric proposal distribution, we have

A(x ​, ) =t x
~ min{1, ​ }

p(x ​)/q(x ​∣ )t t x
~

p( )/q( ∣x ​)x~ x~ t

This will compensate the bias/preference in the transition matrix/kernel function
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Why MH Works
The transition matrix of the MH algorithm is

p( ∣x ​) =x~ t ​ ​{
q( ∣x ​)A( , x ​)x~ t x~ t

q(x ​∣x ​) + ​ q( ∣x ​)(1 − A( , x ​))t t ∑ =x ​x~ t
x~ t x~ t

if  = x ​x~  t

otherwise

[Marphy 2023, sec 12.2.2] gives an excellent explanation of this formula

 defines a Markov chain that satisfies the detailed balance
condition

 is its stationary distribution

p( ∣x ​)x~ t

p(x)
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Proposal Distribution: RWM algorithm
The random-walk Metropolis algorithm is the MH algorithm with the proposal
distribution

q( ∣x ​) =x~ t N ( ; x ​, τ I)x~ t
2
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Comparison: MH vs. Accept-Reject
Proposal distributions

For MH: 

For accept-reject: 

 

q( ∣x) =x~ N ( ; x, 10 )x~ 2

q( ) =x~ N ( , 0, 10 )x~ 2
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Comparison: MH with Different Proposals
Proposal distributions:

Left: 

Right: 

 

q( ∣x) =x~ N ( ; x, 1 )x~ 2

q( ∣x) =x~ N ( ; x, 50 )x~ 2
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Gibbs Sampling
Using  to represent the sample at time step x(t) t
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Gibbs Sampling
Consider a three-dimensional distribution , the sampling
procedure for time step 

Return  as the sample at time step 

p(x ​, x ​, x ​)1 2 3

t + 1

x ​ ∼1
(t+1)

p(x ​∣x ​, x ​)1 2
(t)

3
(t)

x ​ ∼2
(t+1)

p(x ​∣x ​, x ​)2 1
(t+1)

3
(t)

x ​ ∼3
(t+1)

p(x ​∣x ​, x ​)3 1
(t+1)

2
(t+1)

(x ​, x ​, x ​)1
(t+1)

2
(t+1)

3
(t+1)

t + 1
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Sampling from Conditional Distributions
For example

x ​ ∼1
(t+1)

p(x ​∣x ​, x ​)1 2
(t)

3
(t)

With the sampling algorithm discussed in the last lecture, we can actually
sample from the unnormalized distribution, by fixing  and  in this case

x ​ ∼1
(t+1)

p(x ​, x ​, x ​) ∝1 2
(t)

3
(t)

p(x ​∣x ​, x ​)1 2
(t)

3
(t)

x ​2 x ​3
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Demo
A demo with a multimodal distribution
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http://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=banana


Gibbs Sampling as a Special Case of MH
The proposal distribution as shown in the previous page

q ​( ∣x) =i x
~ p( ​∣x ​)I( ​ =x~i −i x~−i x ​)−i

The acceptance rate is 
100%
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Gibbs Sampling on Ising Models

p(x) ∝ ​ψ ​(x ​, x ​; θ)
(i,j)∈E

∏ ij i j

Explore the conditional independence for parallel sampling
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Example
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Thank You!
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