CS 8501 Advanced Topics in Machine Learning

Lecture 10: Monte Carlo Methods (II)

Yangfeng Ji
Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://yangfengji.net/

Markov Chains

Reference

- Andrieu et al. An Introduction to MCMC for Machine Learning. 2003
- Holmes-Cerfon. Lecture 3 Markov Chains (II). Spring 2019

Markov Chain Monte Carlo

- Monte Carlo methods
- Use samples to approximate a probability distribution
- Markov Chain Monte Carlo is a strategy for generating samples $\left\{x_{t}\right\}$ while exploring the sampling space using a Markov chain mechanism.
- The mechanism is constructed so that
- the chain spends more time in the most important regions.
- the samples mimic samples drawn from the target distribution $p(x)$

Markov Chain

A Markov chain defined on a finite state space $\mathcal{S}=\left\{s_{1}, \ldots, s_{K}\right\}$ is described as

$$
p\left(x_{t} \mid x_{t-1}, \ldots, x_{1}\right)=T\left(x_{t} \mid x_{t-1}\right)
$$

where $T\left(x_{t} \mid x_{t-1}\right)$ is a $K \times K$ matrix

- $p\left(x_{t}=s_{k} \mid x_{t-1}=s_{k^{\prime}}\right)$ describe the transition probability from $x_{t-1}=$ $s_{k^{\prime}}$ to $x_{t}=s_{k}$
- $\sum_{a_{k}} p\left(x_{t}=a_{k} \mid x_{t-1}\right)=1$

Homogeneous Markov Chain

A Markov chain is homogeneous if

$$
T=T\left(x_{t} \mid x_{t-1}\right)
$$

remains invariant for all t.
In this case, the evolution of the chain depends solely on

- current state of the chain, and
- a fixed transition matrix

Example

Transition matrix: row x_{t-1}; column x_{t}

$$
T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0.1 & 0.9 \\
0.6 & 0.4 & 0
\end{array}\right]
$$

Example (II)

Consider the following initial state probability $p\left(x_{1}\right), \pi=[1.0,0,0]$, then

- $p\left(x_{2}\right)$

$$
p\left(x_{2}\right)=\sum_{x_{1}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right)=\pi \cdot T
$$

- $p\left(x_{100}\right)$

$$
p\left(x_{100}\right)=\pi \cdot T^{100-1}=[0.2213,0.4098,0.3688]
$$

Example (III)

With another initial state probability $\pi^{\prime}=[0,1.0,0]$, we still have

$$
p\left(x_{100}\right)=\pi^{\prime} \cdot T^{100-1}=[0.2213,0.4098,0.3688]
$$

- In fact, this is true for any initial probability
- And

$$
p(x)=[0.2213,0.4098,0.3688]
$$

is the stationary distribution of this Markov chain

- Mathematically, the stationary distribution π satisfies

$$
\pi P=\pi
$$

Markov Chain (Cont.)

A Markov chain has a stationary distribution, as long as T obeys

- Irreducibility: from any state, there is a positive probability of visiting all other states
- Aperiodicity: the state transition should not be trapped in cycles

The Detailed Balance Condition

A sufficient (but not necessary) condition to ensure $p(x)$ to be an stationary distribution is the following detailed balance condition

$$
p\left(x_{t-1}\right) T\left(x_{t} \mid x_{t-1}\right)=p\left(x_{t}\right) T\left(x_{t-1} \mid x_{t}\right)
$$

- This is the key of MCMC
- Comparing to the definition of stationary distribution, this is defined on each edge of a transition graph
- An example of detailed balance graph

$$
s_{1} \rightleftharpoons s_{2} \rightleftharpoons s_{3}
$$

Examples

The previous example does not satisfy the detailed balance condition

A simple example that satisfies the detailed balance condition

Continuous State Space

In continuous state spaces, the transition matrix T becomes an integral kernel K,

$$
p\left(x_{t}\right)=\int p\left(x_{t-1}\right) K\left(x_{t}, x_{t-1}\right) d x_{t-1}
$$

Consider $K\left(x_{t}, x_{t-1}\right)$ as a conditional probability $p\left(x_{t} \mid x_{t-1}\right)$ would be easier

Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm

1. Initialize x_{0}
2. For $t=0$ to T

- Sample $u \sim U[0,1]$
- Sample $\tilde{x} \sim q\left(\tilde{x} \mid x_{0}\right) \quad / /$ proposal distribution
- if $u<\min \left\{1, \frac{p(\tilde{x}) q\left(x_{t} \mid \tilde{x}\right)}{p\left(x_{t}\right) q\left(\tilde{x} \mid x_{t}\right)}\right\}$

$$
x_{t+1} \leftarrow \tilde{x}
$$

else

$$
x_{t+1} \leftarrow x_{t}
$$

Proposal Distribution

In the MH algorithm, the proposal distribution is defined as

$$
q\left(\tilde{x} \mid x_{t}\right)
$$

where x_{t} is the sample from the current time step

- $q\left(\tilde{x} \mid x_{t}\right)$ is the transition matrix/kernel function of the Markov chain
- There is a dependence between x_{t} and \tilde{x}

Acceptance Probability

The acceptance probability is defined as

$$
A\left(x_{t}, \tilde{x}\right)=\min \left\{1, \frac{p(\tilde{x}) q\left(x_{t} \mid \tilde{x}\right)}{p\left(x_{t}\right) q\left(\tilde{x} \mid x_{t}\right)}\right\}
$$

To understand the acceptance probability, let's consider a simple proposal function

$$
q\left(\tilde{x} \mid x_{t}\right)=\mathcal{N}\left(\tilde{x} ; x_{t}, I\right) \propto \exp \left(-\left\|\tilde{x}-x_{t}\right\|_{2}^{2}\right)
$$

Symmetric Proposal Distribution

When the proposal distribution is symmetric, the acceptance probability is reduced as

$$
A\left(x_{t}, \tilde{x}\right)=\min \left\{1, \frac{p(\tilde{x})}{p\left(x_{t}\right)}\right\}
$$

Therefore, the algorithm will

- always accept a sample \tilde{x}, when $p(\tilde{x}) \geq p\left(x_{t}\right)$
- accept a sample \tilde{x} by chance, when $p(\tilde{x})<p\left(x_{t}\right)$

Asymmetric Proposal Distribution

For asymmetric proposal distribution, we have

$$
A\left(x_{t}, \tilde{x}\right)=\min \left\{1, \frac{p(\tilde{x}) / q\left(\tilde{x} \mid x_{t}\right)}{p\left(x_{t}\right) / q\left(x_{t} \mid \tilde{x}\right)}\right\}
$$

This will compensate the bias/preference in the transition matrix/kernel function

Why MH Works

The transition matrix of the MH algorithm is

$$
p\left(\tilde{x} \mid x_{t}\right)= \begin{cases}q\left(\tilde{x} \mid x_{t}\right) A\left(\tilde{x}, x_{t}\right) & \text { if } \tilde{x} \neq x_{t} \\ q\left(x_{t} \mid x_{t}\right)+\sum_{\tilde{x} \neq x_{t}} q\left(\tilde{x} \mid x_{t}\right)\left(1-A\left(\tilde{x}, x_{t}\right)\right) & \text { otherwise }\end{cases}
$$

[Marphy 2023, sec 12.2.2] gives an excellent explanation of this formula

- $p\left(\tilde{x} \mid x_{t}\right)$ defines a Markov chain that satisfies the detailed balance condition
- $p(x)$ is its stationary distribution

Proposal Distribution: RWM algorithm

The random-walk Metropolis algorithm is the MH algorithm with the proposal distribution

$$
q\left(\tilde{x} \mid x_{t}\right)=\mathcal{N}\left(\tilde{x} ; x_{t}, \tau^{2} I\right)
$$

(a)

MH with $\mathcal{N}\left(0,500^{2}\right)$ proposal

(b)

MH with $\mathcal{N}\left(0,8^{2}\right)$ proposal

(c)

Comparison: MH vs. Accept-Reject

Proposal distributions

- For MH: $q(\tilde{x} \mid x)=\mathcal{N}\left(\tilde{x} ; x, 10^{2}\right)$
- For accept-reject: $q(\tilde{x})=\mathcal{N}\left(\tilde{x}, 0,10^{2}\right)$

Comparison: MH with Different Proposals

Proposal distributions:

- Left: $q(\tilde{x} \mid x)=\mathcal{N}\left(\tilde{x} ; x, 1^{2}\right)$
- Right: $q(\tilde{x} \mid x)=\mathcal{N}\left(\tilde{x} ; x, 50^{2}\right)$

Gibbs Sampling

- Using $x^{(t)}$ to represent the sample at time step t

Gibbs Sampling

Consider a three-dimensional distribution $p\left(x_{1}, x_{2}, x_{3}\right)$, the sampling procedure for time step $t+1$

- $x_{1}^{(t+1)} \sim p\left(x_{1} \mid x_{2}^{(t)}, x_{3}^{(t)}\right)$
- $x_{2}^{(t+1)} \sim p\left(x_{2} \mid x_{1}^{(t+1)}, x_{3}^{(t)}\right)$
- $x_{3}^{(t+1)} \sim p\left(x_{3} \mid x_{1}^{(t+1)}, x_{2}^{(t+1)}\right)$

Return $\left(x_{1}^{(t+1)}, x_{2}^{(t+1)}, x_{3}^{(t+1)}\right)$ as the sample at time step $t+1$

Sampling from Conditional Distributions

For example

$$
x_{1}^{(t+1)} \sim p\left(x_{1} \mid x_{2}^{(t)}, x_{3}^{(t)}\right)
$$

With the sampling algorithm discussed in the last lecture, we can actually sample from the unnormalized distribution, by fixing x_{2} and x_{3} in this case

$$
x_{1}^{(t+1)} \sim p\left(x_{1}, x_{2}^{(t)}, x_{3}^{(t)}\right) \propto p\left(x_{1} \mid x_{2}^{(t)}, x_{3}^{(t)}\right)
$$

Demo

A demo with a multimodal distribution

Gibbs Sampling as a Special Case of MH

- The proposal distribution as shown in the previous page

$$
q_{i}(\tilde{x} \mid x)=p\left(\tilde{x}_{i} \mid x_{-i}\right) \mathbb{I}\left(\tilde{x}_{-i}=x_{-i}\right)
$$

- The acceptance rate is 100%

$$
\begin{aligned}
\alpha & =\frac{p\left(\boldsymbol{x}^{\prime}\right) q_{i}\left(\boldsymbol{x} \mid \boldsymbol{x}^{\prime}\right)}{p(\boldsymbol{x}) q_{i}\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{x}\right)}=\frac{p\left(x_{i}^{\prime} \mid \boldsymbol{x}_{-i}^{\prime}\right) p\left(\boldsymbol{x}_{-i}^{\prime}\right) p\left(x_{i} \mid \boldsymbol{x}_{-i}^{\prime}\right)}{p\left(x_{i} \mid \boldsymbol{x}_{-i}\right) p\left(\boldsymbol{x}_{-i}\right) p\left(x_{i}^{\prime} \mid \boldsymbol{x}_{-i}\right)} \\
& =\frac{p\left(x_{i}^{\prime} \mid \boldsymbol{x}_{-i}\right) p\left(\boldsymbol{x}_{-i}\right) p\left(x_{i} \mid \boldsymbol{x}_{-i}\right)}{p\left(x_{i} \mid \boldsymbol{x}_{-i}\right) p\left(\boldsymbol{x}_{-i}\right) p\left(x_{i}^{\prime} \mid \boldsymbol{x}_{-i}\right)}=1
\end{aligned}
$$

Gibbs Sampling on Ising Models

$$
p(x) \propto \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j} ; \theta\right)
$$

Explore the conditional independence for parallel sampling

Example

Figure 12.3: Example of image denoising using Gibbs sampling. We use an Ising prior with $J=1$ and a Gaussian noise model with $\sigma=2$. (a) Sample from the posterior after one sweep over the image. (b) Sample after 5 sweeps. (c) Posterior mean, computed by averaging over 15 sweeps. Compare to Figure 10.3 which shows the results of mean field inference. Generated by ising image denoise demo.ipynb.

Thank You!

