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Markov Chain Monte Carlo

e Monte Carlo methods
o Use samples to approximate a probability distribution

e Markov Chain Monte Carlo is a strategy for generating samples {a:t}
while exploring the sampling space using a Markov chain mechanism.

e The mechanism is constructed so that
o the chain spends more time in the most important regions.

o the samples mimic samples drawn from the target distribution p(x)



Markov Chain

A Markov chain defined on a finite state space S = {s1,...,Sk } is
described as

p(zt|Ti-1,. .., 21) = T(@t|@t-1)
where T'(x|x; 1) is a K x K matrix

e p(x; = Sk|Tt_1 = sp) describe the transition probability from z; 1 =
Sk 10 Ty = S,

e 3, plae = aile 1) =1



Homogeneous Markov Chain

A Markov chain is homogeneous Iif

T =T(xs|xs_ 1)
remains invariant for all ¢.
In this case, the evolution of the chain depends solely on

e current state of the chain, and

e a fixed transition matrix



Example
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Example (ll)

Consider the following initial state probability p(xz), = = [1.0, 0, 0], then
o p(z2)

. P(ivloo)
p(z190) = m- T = [0.2213,0.4098, 0.3688]



Example (1)

With another initial state probability 7' = [0, 1.0, 0], we still have
p(xig0) = 7' - T =[0.2213, 0.4098, 0.3688]

e In fact, this is true for any initial probability
e And

p(z) = [0.2213,0.4098, 0.3688]

IS the stationary distribution of this Markov chain

o Mathematically, the stationary distribution 7 satisfies

wP =



Markov Chain (Cont.)

A Markov chain has a stationary distribution, as long as 1" obeys
e Irreducibility: from any state, there is a positive probability of visiting all
other states

e Aperiodicity: the state transition should not be trapped in cycles
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The Detalled Balance Condition

A sufficient (but not necessary) condition to ensure p(w) to be an stationary
distribution is the following detailed balance condition

p(zi1)T(zt|zs 1) = p(2e) T (41| 24)
e This is the key of MCMC

o Comparing to the definition of stationary distribution, this is defined on
each edge of a transition graph

o An example of detailed balance graph

81#32#83
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Examples

The previous example does not satisfy the detailed balance condition
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Continuous State Space

In continuous state spaces, the transition matrix I’ becomes an integral kernel
K,

p(a:) = /p(mtl)K(mtaxtl)dmtl

Consider K (x;, ;1) as a conditional probability p(x;|z;_1) would be easier
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Metropolis-Hastings Algorithm
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Metropolis-Hastings Algorithm

1. Initialize x

2.Fort =0to T’

o Sample u ~ U|0, 1]

o Sample & ~ q(&|xg) // proposal distribution
p(Z)g(z:|Z) I

o if u < min{1, ==

Tl < X
else

Li11 < Ly
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Proposal Distribution

In the MH algorithm, the proposal distribution is defined as
q(Z|z:)
where x; is the sample from the current time step

o q(&|x;) is the transition matrix/kernel function of the Markov chain

e There is a dependence between z; and x
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Acceptance Probability

The acceptance probabillity is defined as
p(:ﬁ)Q(wt‘fé) }
p(xt)q(Z|z:)

To understand the acceptance probabillity, let's consider a simple proposal
function

A(ZEt, C%) — IIliIl{]_,

q(Z]ze) = N(Z; 24, 1) oc exp(—[|Z — z2)
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Symmetric Proposal Distribution

When the proposal distribution iIs symmetric, the acceptance probability is
reduced as

~

p(z)
p(xt)

A(CEt, 53) — HliIl{]_,

}

Therefore, the algorithm will

e always accept a sample &, when p(Z) > p(x;)

e accept a sample & by chance, when p(Z) < p(x;)
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Asymmetric Proposal Distribution

For asymmetric proposal distribution, we have
p(2)/q(Z|zt)
p(zt)/q(zt|Z)

This will compensate the bias/preference in the transition matrix/kernel function

A(.Tt, £1~3) — IIliIl{]_,

}
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Why MH Works

The transition matrix of the MH algorithm is
' q(t|we) + D05, a(F2:)(1 — A(Z,2;)) otherwise
[Marphy 2023, sec 12.2.2] gives an excellent explanation of this formula

o p(Z|x;) defines a Markov chain that satisfies the detailed balance
condition

o p(x) is its stationary distribution

19



Proposal Distribution: RWM algorithm

The random-walk Metropolis algorithm is the MH algorithm with the proposal
distribution

q(Z|z:) = N(Z; 24, 7°1)

MH with N/(0, 12) proposal MH with A/(0,500?) proposal MH with N(0, 8%) proposal
JA/ 0.04 /L‘,k/ 0.08 J\A/ 0.03
. 0.03 . 0.06 0 0.02
0.02 0.04
42 001 420 002 42 0.01
% 200 0.00 S 200 0.00 @ 200 0.00
4 7 /
Oy, 750 5 100 0,750 5 100 O, 750 5 100
1000 5 © 1000 5 1000 50 0

~100 0 Sam\)\es ~100 Sam\)\es —~100 50 Samp\es
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Comparison: MH vs. Accept-Reject

Proposal distributions
e For MH: ¢(Z|z) = N (Z; z, 10?)
e For accept-reject: ¢(Z) = N (z, 0, 10%)
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Comparison: MH with Different Proposals

Proposal distributions:
. Left: g(Z|z) = N (Z;z,1?)
e Right: ¢(Z|z) = N (Z; z,50%)
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Gibbs Sampling

e Using 2 1o represent the sample at time step ¢
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Gibbs Sampling

Consider a three-dimensional distribution p(x1, T2, x3), the sampling
procedure for time step ¢t + 1

(2)

¢ Xy ~ p(x1|zs ,:133

)
(t+1) ( mgtJrl) g))
) plagfa{" ), af

")
Return (ﬂ””, azg’url), w§t+1)) as the sample at time step ¢ + 1
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Sampling from Conditional Distributions

For example

2~ p(a |2, 2

With the sampling algorithm discussed in the last lecture, we can actually
sample from the unnormalized distribution, by fixing 2 and x3 in this case

m§t+1) ~ p(z1, mgt)a m:(>)t)) X p(:cﬂmét), mét))
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Demo

A demo with a multimodal distribution

Gibbs Sampling

Simulation options
Algorithm GibbsSampling e

Target distribution multimodal E

Autoplay

Autoplay delay [l 250
Tweening delay 0
Step

Reset

Visualization Options
Animate proposal
Show target
Show samples

Show histogram

HMoooa

Histogram bins

Algorithm Options
About this algorithm

Close Controls
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http://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=banana

Gibbs Sampling as a Special Case of MH

e The proposal distribution as shown in the previous page
g;(Z|x) = p(&;|x_;)(x_; = x_;)
 The acceptance rate is 100%
p(a)gi(x|x’) _ plx;lel;)pel;)p(z:|e’;)
p(x)g:(x'|e)  p(zi|lz_i)p(x_i)p(z;|z_;)
|
—

_ pxilz—i)p(z—_i)p(zi|T_;) _1
- plailz—i)p(z—;)p(z]|z—;)

a =

27



Gibbs Sampling on Ising Models

H ¢Z] Li, 3337

(¢,j)€FE

Explore the conditional independence for parallel sampling
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Example

sample 1, Gibbs sample 5, Gibbs mean after 15 sweeps of Gibbs

(b) (c)

Figure 12.3: Example of image denoising using Gibbs sampling. We use an Ising prior with J =1 and a
Gaussian noise model with o = 2. (a) Sample from the posterior after one sweep over the image. (b) Sample
after 5 sweeps. (c) Posterior mean, computed by averaging over 15 sweeps. Compare to Figure 10.3 which
shows the results of mean field inference. Generated by ising image denoise demo.ipynb.

29



Thank You!
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