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Introduction
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Posterior Distribution
Consider a latent variable model with  as the observed variable and  as
the latent variable

p(Z ∣ X) = ​

p(X)
p(X ∣ Z)p(Z)

where

p(X) = p(X∣Z)p(Z)dz∫

X Z
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Problem Setup
Target density: in the rest of this lecture, we will consider a generic distribution

p(X)

as the target distribution that we would like to study

In general, we assume  is an -dimensional random vector, aka X N X ∈ RN
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Expectation
Consider a function  of , its expectation is defined as

E[f(X)] = f(x)p(x)dx∫

With a simple example , the approximated expectation

E[X] ≈ ​ ​x ​

N

1

n=1

∑
N

n

f(x) x

f(x) = x
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Expectation (II)
With a generic function , the approximated expectation

E[f(X)] = ​ ​f(x ​)
N

1

n=1

∑
N

n

Therefore, the major challenge is to get a collection of samples

{x }n n=1
N

that are drawn from 

f(x)

p(X)
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Two Central Questions
Problem 1: How to generate samples  from a given probability
distribution 

Sampling from simple distributions

Reject-Accept sampling

Importance sampling

Problem 2: How to measure the quality of approximation

E[f(X)] = ​ ​f(x ​)
N

1

n=1

∑
N

n

Variance reduction

{x ​} ​n n=1
R

p(X)
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Monte Carlo Integration
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Integration
Many problem in statistical estimation is related to integration

marginalization:

p(x) = p(x, z)dz∫

expectation:

E[f(x)] = f(x)p(x)dx∫
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Integration via Sampling
Assume we have a set of  samples from , , the
expectation can be approximated as

E[f(x)] ≈ ​ ​f(x ​)
N

1

n=1

∑
N

n

N p(x) {x ​} ​ ∼n n=1
N p(x)
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Justification
Approximate  with an empirical distribution

​(x) =p̂ ​ ​ δ(x =
N

1

n=1

∑
N

x ​)n

Substitute  with  in the expectation definition

E[f(x)] ≈ f(x) ⋅∫ ​ ​ δ(x =
N

1

n=1

∑
N

x ​)dx =n ​ ​ f(x)δ(x =
N

1

n=1

∑
N

∫ x ​)dxn

p(x)

p(x) ​(x)p̂
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Sampling from Simple Distributions
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Some Special Cases of Sampling
1. Sampling from 

2. Sampling using the inverse CDF

3. Sampling from a Gaussian

U (0, 1)
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Pseudo-random Number Generator
John von Neumann's Middle-square method

Start to repeat a number in the previous sequence quickly

Can be used to generate uniform distributions
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Cumulative Distribution Function (CDF)
For a (either discrete or continuous) random variable , CDF is defined as

F (a) = ​ p(X)dx =∫
x≤a

p(X ≤ a)

A few examples of  with respect to 

X

F N (x; 0, 1)

F (0) = 0.5
F (∞) = 1.0
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Sampling with Inverse CDF
Theorem If  is a uniform random variable, then  is a
random variable following the distribution with  as its CDF

u ∼ U (0, 1) F (u)−1

F
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Accept-Reject Sampling
Two other names:

Rejection sampling

Acceptance-rejection sampling

17



Starting Point
Define the target distribution as

p(x) = ​ ​(x)
Z ​p

1
p~

where  is the unnormalized distribution with

Z ​ =p ​(x)dx∫ p~

​p~
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Basic Idea
Choose a proposal distribution , such that

Cq(x) ≥ ​(x)p~

where  is a constant, and  gives an upper envelope for 

Sampling procedure
Sample 

Sample 

If , accept  as a sample from ; otherwise, reject it

q(x)

C Cq(x) ​p~

x ​ ∼0 q(x)
u ​ ∼0 U (0,Cq(x ​)0

u ​ >0 ​(x ​)p~ 0 x ​0 p(x)
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Why It Works?
In the following plot, 

The proof can be found in section 11.4.1

M = C
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Issues of Rejection Sampling
The shape similarity between  and 

Adaptive rejection sampling

The acceptence rate
A fundamental weakness

q(x) ​(x)p~
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Acceptance Rate: 1 dimension

Target distribution: 

Proposal distribution: 

To make sure the proposal distribution be a good envelope, we need  to
be at least

C = ​ =
q(0)
p(0)

​

σ ​p

σ ​q

p(x) = ​ exp(− ​ )
​σ ​2π p

1
2σ ​p

2
x2

q(x) = ​ exp(− ​ )
​σ ​2π q

1
2σ ​q

2
x2

C
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Acceptance Rate:  dimensions

Target distribution: 

Proposal distribution: 

Therefore,  should at least be

C = ​ =
q(0)
p(0)

​ =
det(Σ ​)p ​2

1

det(Σ ​)q ​2
1

​ =
σ ​p
D

σ ​q
D

( ​ )
σ ​p

σ ​q D

Because 

D

p(x) = (2π) det(Σ ​) exp(− ​x Σ ​x)− ​2
D

p
− ​2

1

2
1 ⊤

p
−1

q(x) = (2π) det(Σ ​) exp(− ​x Σ ​x)− ​2
D

q
− ​2

1

2
1 ⊤

q
−1

C

det(Σ) = det(σ I) =2 σ2D
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Sampling from High Dimensions
This is a fundamental challenge of all sampling methods

The methods discussed in this lecture is mostly applicable to low
dimensions

Next lecture will discuss the sampling methods for high-dimensional space
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Importance Sampling
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Problem Setup
Consider the following integral problem

E[f(x)] = f(x)p(x)dx∫

Recall the previous discussion, if we can sample from  directly

E[f(x)] = ​ ​f(x ​)
N

1

n=1

∑
N

n

p(x)
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Sampling from a Proposal Distribution
Now, if we sample from a proposal distribution  and approximate the
expectation as

E[f(x)] = ​ ​w ​f(x ​)
N

1

n=1

∑
N

n n

What  could be?

w ​ =n ​

q(x ​)n

p(x ​)n

Note:  needs to be a normalized probability distribution in this case

q(x)

w ​n

p(x)
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Justification
Consider the expectation

E[f(x)] = f(x)p(x)dx =∫ q(x)[ ​ ]f(x)dx∫
q(x)
p(x)

Sampling , we have

E[f(x)] ≈ ​ ​ ​f(x ​)
N

1

n=1

∑
N

q(x ​)n

p(x ​)n
n

{x ​} ∼n q(x)
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What about unnormalized ?

Consider an unnormalized target distribution , we define the unnormalized
weight as

​ =w~n ​

q(x)
​(x)p~

With the normalization constant is , we have 

Note that

Z ​ =p ​(x)dx =∫ p~ [ ​ ]q(x)dx ≈∫
q(x)

​(x)p~
​ ​ ​ =

N

1

n=1

∑
N

q(x ​)n

​(x ​)p~ n
​ ​ ​

N

1

n=1

∑
N

w~n

​(X)p~

​(x)p~

Z ​ =p ​(x)dx∫ p~ w =n ​

Z ​p

​w~n
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Therefore
With unnormalized , we have

w ​ ≈n ​

​ ​ ​

N
1 ∑n=1

N
w~n

​w~n

and

E[f(x)] ≈ ​ =
​ ​ ​

N
1 ∑n=1

N
w~n

​ ​ ​f(x ​)
N
1 ∑n=1

N
w~n n

​

​ ​∑n=1
N

w~n

​ f(x ​)∑n=1
N

w~n n

​(x)p~
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Controlling Variance
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Rao-Blackwellisation
For , instead of sampling on both random variables directly, we
can do

Marginalize : 

Sampling  from 

E[f(X,Y )] = E[f(X,Y )∣X)p(X)]dx =∫ ​ ​f(x ​)
N

1

n=1

∑
N

n

E[f(X,Y )]

Y f(X) = p(Y ∣X)f(X,Y )dy =∫ E[f(X,Y )∣X]

X p(X)
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Rao-Blackwellisation (II)
Why it reduce the variance

Essentially, it reduce the variance by sampling from low-dimensional space.
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Thank You!
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