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Introduction



Posterior Distribution

Consider a latent variable model with X as the observed variable and Z as

the latent variable
p(X | Z)p(Z)
p(X)

p(Z | X) =

where

p(X) = / p(X|2)p(2)dz



Problem Setup

Target density: in the rest of this lecture, we will consider a generic distribution

p(X)
as the target distribution that we would like to study

In general, we assume X is an IN-dimensional random vector, aka X € RY



Expectation

Consider a function f(x) of x, its expectation is defined as

E[f(X)] = / #(2)p(2)da

With a simple example f(x) = x, the approximated expectation

1 N
n=1



Expectation (ll)

With a generic function f(x), the approximated expectation

B(X)] = 3 £l

Therefore, the major challenge is to get a collection of samples

{xn}ﬁll

that are drawn from p(X)



Two Central Questions

e Problem 1: How to generate samples {a:n}ff:l from a given probability
distribution p(X)
o Sampling from simple distributions

o Reject-Accept sampling
o Importance sampling

e Problem 2: How to measure the quality of approximation

BF(X)] = 3 £

o Variance reduction



Monte Carlo Integration



Integration

Many problem in statistical estimation is related to integration

e marginalization:

e expectation:

Elf(2)] = / f(2)p(2)da



Integration via Sampling

Assume we have a set of N samples from p(z), {z,}2_; ~ p(z), the
expectation can be approximated as

Blf @)~ v 3 fzn)

10



Justification

o Approximate p(x) with an empirical distribution

N
. 1
p(z) = N 25(33 = In)
n=1
e Substitute p(x) with p(x) in the expectation definition
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Sampling from Simple Distributions
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Some Special Cases of Sampling

1. Sampling from U (0, 1)
2. Sampling using the inverse CDF

3. Sampling from a Gaussian
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Pseudo-random Number Generator

John von Neumann's Middle-square method

675248~
455959861504 |
959861 :

e Start to repeat a number in the previous sequence quickly

e Can be used to generate uniform distributions
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Cumulative Distribution Function (CDF)

For a (either discrete or continuous) random variable X, CDF is defined as
Fa)= [ p(X)de =p(X < a)
r<a

A few examples of F" with respect to N (x; 0, 1)
. F(0) = 0.5
e F(0) =1.0
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Sampling with Inverse CDF

Theorem If u ~ U(0, 1) is a uniform random variable, then F'~!(u) is a
random variable following the distribution with F' as its CDF

Inverse cdf sampling

cdf-N (3, 1)

e samples Unif(0,1)
e samples N (3,1)
pdf N (3,1)




Accept-Reject Sampling

Two other names:

e Rejection sampling

e Acceptance-rejection sampling
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Starting Point

Define the target distribution as

1

p(z) = Z—pﬁ(w)

where p is the unnormalized distribution with

Z :/ﬁ(a:)da:
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Basic Idea

« Choose a proposal distribution g(x), such that

Cq(z) > p(z)
g

where C'is a constant, and Cq(x) gives an upper envelope for p

e Sampling procedure
o Sample g ~ q(x)
o Sample ug ~ U (0, Cq(xg)

o If ug > p(xo), accept xg as a sample from p(x); otherwise, reject it
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Why It Works?

In the following plot, M = C

A

Accept Region

The proof can be found in section 11.4.1
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Issues of Rejection Sampling

e The shape similarity between g(x) and p(x)
o Adaptive rejection sampling

e The acceptence rate
o A fundamental weakness

A

Accept Region
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Acceptance Rate: 1 dimension

........

e Target distribution: p(x) = L exp(—3-z)

e Proposal distribution: g(z) = \/2;% exp(—%)

e To make sure the proposal distribution be a good envelope, we need C' to
be at least

O — p(0) _ Oq

q(0) Op



Acceptance Rate: D dimensions

1

» Target distribution: p(z) = (27) 2 det(3,) 2 exp(
» Proposal distribution: g(z) = (2m)~ 2 det(Eq)_% exp(

e Therefore, C should at least be

szLO):det

(
g(0)  det(
Because det(X) = det(o?I) = 2P




Sampling from High Dimensions

This is a fundamental challenge of all sampling methods

e The methods discussed in this lecture is mostly applicable to low
dimensions

e Next lecture will discuss the sampling methods for high-dimensional space
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Importance Sampling
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Problem Setup

Consider the following integral problem

E[f(z)] = / f(2)p(2)da

Recall the previous discussion, if we can sample from p(x) directly

Blf@)] = 3 £
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Sampling from a Proposal Distribution

Now, if we sample from a proposal distribution ¢(x) and approximate the
expectation as

Blf @) = - 3 wnf (@)

What w,, could be?

P(xn)
q(zn)

Note: p(x) needs to be a normalized probability distribution in this case

n:
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Justification

Consider the expectation

/f

Sampling {z,, } ~ q(x

Elf(z)] =

. we have

N

n=1

28



What about unnormalized p( X )?

Consider an unnormalized target distribution p(x), we define the unnormalized
weight as

__p(=)

Wy =
q(z)

With the normalization constant is Zp = fﬁ(w dw, we have w, = g—;
Note that

- N - N

i p() Ly~ p@n) 1N
Zp = /P(w)daj = /[]Q(w)dflj e — N 2w Wn
P q(z) N nz_; q(zn) N nz_:l
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Therefore

With unnormalized p(x), we have

W,

Wy, ~

1 N ~
N anl Wn
and

% Zf,]zv:l Wy f (@)

2.

N ~
n=1 ’lUnf

(zn)

E[f(2)] ~ -

N ~
% anl Wn

N ~
anl Wnp
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Controlling Variance
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Rao-Blackwellisation

For E|f(X,Y )], instead of sampling on both random variables directly, we
can do

o Marginalize Y: f(X) = [p(Y|X)f(X,Y)dy = E[f(X,Y)|X]
e Sampling X from p(X)

/E (X,Y)|X)p Zf:cn
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Rao-Blackwellisation (ll)

Why it reduce the variance

1 T 10
Tp
Iy = 0.7
057 1 5T
p(xmﬂ:b)
0 : 0 .
0 0.5 g 1 0 0.5 2, 1

Essentially, it reduce the variance by sampling from low-dimensional space.



Thank You!
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