CS 8501 Advanced Topics in Machine Learning

Lecture 08: Variational Inference (II)

Yangfeng Ji
Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://yangfengji.net/

Variational Bayes EM

Latent Variable Models

Consider a latent variable model $p(x, z ; \theta)$, where z is latent variable and θ denotes all model parameters.

The conceptual way of learning a latent variable model is
$\hat{\theta} \leftarrow \operatorname{argmax}_{\theta^{\prime}} p(x ; \theta)$

Gaussian Mixture Models

Consider a specific example of latent variable model: Gaussian mixture model

$$
p(x ; \theta)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)
$$

With N training examples $\left\{x^{(n)}\right\}_{n=1}^{N}$, we have the log-likelihood function

$$
\sum_{n} \log p\left(x^{(n)} ; \theta\right)=\sum_{n} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)
$$

There is no closed-form solution for this problem

Gaussian Mixture Models (II)

The equivalent formulation with latent variable $z=\left(z_{1}, \ldots, z_{K}\right)$ as a categorical random vector with unknown parameter $\gamma=\left(\gamma_{1}, \ldots, \gamma_{K}\right)$

$$
p(x, z ; \theta, \gamma)=\prod_{k=1}^{K} p(z=k ; \gamma) \cdot \mathcal{N}\left(x ; \mu_{k}, \Sigma_{k}\right)
$$

With N training examples,
$\sum_{n} \log p\left(x^{(n)}, z^{(n)} ; \theta, \gamma^{(1: N)}\right)=\sum_{n} \sum_{k}\left\{\log p\left(z^{(n)}=k ; \gamma^{(n)}\right)+\log N\left(x^{(n)} ; \mu_{k}, \Sigma_{k}\right)\right\}$
Each training example has its own latent variable!

Parameters

In this latent variable, θ has two sets

- associated with each individual Gaussian component

$$
\theta=\left\{\mu_{k}, \Sigma_{k}\right\}_{k=1}^{K}
$$

- associated with each training example

$$
\gamma^{(1: N)}=\left\{\gamma_{1}^{(n)}, \ldots, \gamma_{K}^{(n)}\right\}_{n=1}^{N}
$$

Recall that z_{n} is a categorical random variable with its posterior distribution

$$
p\left(z^{(n)}=k ; \gamma^{(n)}\right)=\gamma_{k}^{(n)}
$$

EM Algorithm

The EM algorithm alternates between the two sets of parameters with the following two steps:

- E-step: Estimate $\hat{\gamma}^{(1: N)}$ with given $\hat{\theta}$

$$
\hat{\gamma}_{k}^{(n)}=E\left[p\left(z^{(n)}=k \mid x^{(n)}\right)\right]=\frac{\mathcal{N}\left(x^{(n)} ; \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}{\sum_{k^{\prime}} \mathcal{N}\left(x^{(n)} ; \hat{\mu}_{k^{\prime}}, \hat{\Sigma}_{k^{\prime}}\right)}
$$

- M-step: Maximize the likelihood for $\hat{\theta}$ with $\hat{\gamma}^{(1: N)}$ given

$$
\hat{\mu}_{k}=\frac{1}{N} \sum_{n=1}^{N} \hat{\gamma}_{k}^{(n)} x^{(n)}
$$

Example

EM Algorithm: Further Comments

- EM algorithm gives θ a point estimate $\hat{\theta}$
- Each training example $x^{(n)}$ has its own latent variable

$$
z^{(n)}=\left(z_{1}^{(n)}, \ldots, z_{K}^{(n)}\right)
$$

- Compute the posterior distribution $p\left(z^{(n)} \mid x^{(n)}\right)$ and its expectation

$$
\left(\gamma_{1}^{(n)}, \ldots, \gamma_{K}^{(n)}\right)
$$

is an important step in this algorithm

Variational EM

At the E-step, instead of computing $p\left(z^{(n)} \mid x^{(n)} ; \theta ; \gamma^{(1: N)}\right)$ directly, variational EM uses a variational distribution $q\left(z^{(n)}\right)$ and solving the problem by minimizing the following objective

$$
\mathrm{KL}\left[q\left(z^{(n)} ; \psi^{(n)}\right) \| p\left(z^{(n)} \mid x^{(n)} ; \gamma^{(n)}\right)\right]
$$

- When q is rich enough to make $\mathrm{KL}=0$, then this is reduced to the traditional EM algorithm

Variational Bayes EM

- When consider θ also as random variables, we need to define a joint distribution $q\left(\theta, z^{(1: N)}\right)$ instead of just $q\left(z^{(1: N)}\right)$
- Follow the mean field approximation, we have

$$
q\left(\theta ; z^{(1: N)} \mid \phi, \psi^{(1: N)}\right)=q(\theta ; \phi) \prod_{n=1}^{N} q\left(z^{(n)} ; \psi^{(n)}\right)
$$

- The algorithm will alternate between ϕ and $\psi^{(1: N)}$

Amortized Inference

Amortized Variational Inference

In mean field approximation, a typical way of defining variational distribution is

$$
q\left(z^{(1: N)} ; \psi^{(1: N)}\right)=\prod_{n=1}^{N} q\left(z^{(n)} ; \psi^{(n)}\right)
$$

Each $z^{(n)}$ has its own parameters that will be estimated during the inference
For example

- $z^{(n)}$ is a Gaussian random variable
- $\psi^{(n)}=\left\{\mu_{(n)}, \sigma_{(n)}^{2}\right\}$

Amortized Variational Inference (II)

Instead of estimating $\psi^{(n)}$ directly, we can design a function $f_{\xi}(\cdot)$ and compute $\psi^{(n)}$ as

$$
\psi^{(n)}=f\left(x^{(n)} ; \xi\right)
$$

where ξ is the parameter set for function f
For example

- $\left(\mu_{(n)}, \sigma_{(n)}\right)=f\left(x^{(n)} ; \xi\right)$
- in variational auto-encoder, this function is a network and is called inference network or recognition network

Variational Auto-encoder

Amortized Variational Inference (III)

Amortized inference: reduce the cost of per-example inference on $\phi^{(n)}$ by training a model $f(x ; \xi)$ that shared across all examples

$$
\psi^{(n)}=f\left(x^{(n)} ; \xi\right)
$$

- With amortized variational inference, the variational parameter set will be changed from $\left\{\psi^{(n)}\right\}$ to ξ
- With $f(\cdot ; \xi)$
- It is much easier to handle new examples, e.g., during testing phase
- It can also reduce the number of parameters (e.g., consider 1M examples)

Issues

Consider the difference:

$$
\left\{\psi^{(n)}\right\} \text { v.s. }\left\{f\left(x^{(n)}, \xi\right)\right\}
$$

- The performance of amortized inference depends on the choice of function f
- Often, $f\left(x^{(n)} ; \xi\right)$ can only give sub-optimal solutions, compared with the direct estimation of $\psi^{(n)}$, which is called the amortization gap.

Thank You!

