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Variational Bayes EM
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Latent Variable Models
Consider a latent variable model , where  is latent variable and 
denotes all model parameters.

The conceptual way of learning a latent variable model is

←θ̂ argmax p(x; θ)θ′

p(x, z; θ) z θ
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Gaussian Mixture Models
Consider a specific example of latent variable model: Gaussian mixture model

p(x; θ) =  π  N (x;μ  , Σ  )
k=1

∑
K

k k k

With  training examples , we have the log-likelihood function

 log p(x ; θ) =
n

∑ (n)
 log  π  N (x;μ  , Σ  )

n

∑
k=1

∑
K

k k k

There is no closed-form solution for this problem

N {x }  

(n)
n=1
N
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Gaussian Mixture Models (II)
The equivalent formulation with latent variable  as a
categorical random vector with unknown parameter 

p(x, z; θ, γ) =  p(z =
k=1

∏
K

k; γ) ⋅ N (x;μ  , Σ  )k k

With  training examples,

 log p(x , z ; θ, γ ) =
n

∑ (n) (n) (1:N )
  {log p(z =

n

∑
k

∑ (n) k; γ ) +(n) logN(x ;μ  , Σ  )}(n)
k k

Each training example has its own latent variable!

z = (z  , … , z  )1 K

γ = (γ  , … , γ  )1 K

N
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Parameters
In this latent variable,  has two sets

associated with each individual Gaussian component

θ = {μ  , Σ  }  k k k=1
K

associated with each training example

γ =(1:N ) {γ  , … , γ  }  1
(n)

K

(n)
n=1
N

Recall that  is a categorical random variable with its posterior
distribution

p(z =(n) k; γ ) =(n) γ  k

(n)

θ

z  n
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EM Algorithm
The EM algorithm alternates between the two sets of parameters with the
following two steps:

E-step: Estimate  with given 

  =γ̂k
(n)

E[p(z =(n) k∣x )] =(n)
 

 N (x ;   ,  )∑k′
(n) μ̂k′ Σ̂k′

N (x ;   ,  )(n) μ̂k Σ̂k

M-step: Maximize the likelihood for  with  given

  =μ̂k     x
N

1

n=1

∑
N

γ̂k
(n) (n)

 γ̂(1:N ) θ̂

θ̂  γ̂(1:N )
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Example
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EM Algorithm: Further Comments
EM algorithm gives  a point estimate 

Each training example  has its own latent variable

z =(n) (z  , … , z  )1
(n)

K

(n)

Compute the posterior distribution  and its expectation

(γ  , … , γ  )1
(n)

K

(n)

is an important step in this algorithm

θ θ̂

x(n)

p(z ∣x )(n) (n)

9



Variational EM
At the E-step, instead of computing  directly, variational
EM uses a variational distribution  and solving the problem by
minimizing the following objective

KL[q(z ;ψ )∥p(z ∣x ; γ )](n) (n) (n) (n) (n)

When  is rich enough to make , then this is reduced to the
traditional EM algorithm

p(z ∣x ; θ; γ )(n) (n) (1:N )

q(z )(n)

q KL = 0
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Variational Bayes EM
When consider  also as random variables, we need to define a joint
distribution  instead of just 

Follow the mean field approximation, we have

q(θ; z ∣ϕ,ψ ) =(1:N ) (1:N ) q(θ;ϕ)  q(z ;ψ )
n=1

∏
N

(n) (n)

The algorithm will alternate between  and 

θ

q(θ, z )(1:N ) q(z )(1:N )

ϕ ψ(1:N )
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Amortized Inference

12



Amortized Variational Inference
In mean field approximation, a typical way of defining variational distribution is

q(z ;ψ ) =(1:N ) (1:N )
 q(z ;ψ )

n=1

∏
N

(n) (n)

Each  has its own parameters that will be estimated during the inference

For example

 is a Gaussian random variable

z(n)

z(n)

ψ =(n) {μ  , σ  }(n) (n)
2

13



Amortized Variational Inference (II)
Instead of estimating  directly, we can design a function  and
compute  as

ψ =(n) f(x ; ξ)(n)

where  is the parameter set for function 

For example

in variational auto-encoder, this function is a network and is called
inference network or recognition network

ψ(n) f  (⋅)ξ

ψ(n)

ξ f

(μ  , σ  ) =(n) (n) f(x ; ξ)(n)
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Variational Auto-encoder
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Amortized Variational Inference (III)
Amortized inference: reduce the cost of per-example inference on  by
training a model  that shared across all examples

ψ =(n) f(x ; ξ)(n)

With amortized variational inference, the variational parameter set will be
changed from  to 

With 
It is much easier to handle new examples, e.g., during testing phase

It can also reduce the number of parameters (e.g., consider 1M
examples)

ϕ(n)

f(x; ξ)

{ψ }(n) ξ

f(⋅; ξ)
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Issues
Consider the difference:

{ψ } v.s. {f(x , ξ)}(n) (n)

The performance of amortized inference depends on the choice of function

Often,  can only give sub-optimal solutions, compared with the
direct estimation of , which is called the amortization gap.

f

f(x ; ξ)(n)

ψ(n)
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Thank You!
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