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Variational Bayes EM



Latent Variable Models

Consider a latent variable model p(a:, A «9), where z is latent variable and 6
denotes all model parameters.

The conceptual way of learning a latent variable model is

f <+ argmaxyp(z;6)



Gaussian Mixture Models

Consider a specific example of latent variable model: Gaussian mixture model

K
= mN (@5, T
k=1

With IV training examples {x(") ,,]X_l, we have the log-likelinood function

Zlogp ZlogZﬂk./\/ (25 pr, L)

There is no closed-form solution for this problem



Gaussian Mixture Models (i)

The equivalent formulation with latent variable z = (21,...,2x) as a
categorical random vector with unknown parameter v = (1, ..., YK )

K
p(z,2;0,7) = | | p(z = k57) - N (; s, i)
k=1

With IV training examples,

Zlogp(a:("’), Z(n); 977(1:N)) = Z Z{logp(z(”) — k;v(”)) + log N(az("’); Wiy 25) }
n n k

Each training example has its own latent variable!



Parameters

In this latent variable, 8 has two sets
e associated with each individual Gaussian component
K
0 = {:uka Ek}kzl

e associated with each training example

YN = (g,

Recall that z,, Is a categorical random variable with its posterior
distribution

p(z™ = k™) = 4"



EM Algorithm

The EM algorithm alternates between the two sets of parameters with the
following two steps:

o E-step: Estimate ﬁf(LN) with given -
N( (n )7 ﬂka 2k)
Zk’ ( 7“76’ Zk’)

e M-step: Maximize the likelihood for 0 with ﬁ/(l‘N) given

1 ()
:NZ%” 2™
n=1

5\ — Elp(z" = k|z™)] =



Example

(f)



EM Algorithm: Further Comments

e EM algorithm gives @ a point estimate 0

e Each training example 2™ has its own latent variable

AR (zfn), . ,zﬁ?))
» Compute the posterior distribution p(z(™ |2(™) and its expectation
(")

IS an important step in this algorithm



Variational EM

At the E-step, instead of computing p(2(™ |2(™); §; v(1:N)) directly, variational
EM uses a variational distribution q( & )) and solvmg the problem by
minimizing the following objective

KL[g(2"™; ™) | p(z™ |2\™); v™)]

e When q is rich enough to make KL. = 0, then this is reduced to the
traditional EM algorithm
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Variational Bayes EM

e When consider @ also as random variables, we need to define a joint
distribution (@, z1*V)) instead of just g(z"*M))

e Follow the mean field approximation, we have

N
q(0; 25|, ) = q(0;¢) | [ a(z"™;5 9 ™)
n=1

 The algorithm will alternate between ¢ and w(l’N)
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Amortized Inference
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Amortized Variational Inference

In mean field approximation, a typical way of defining variational distribution is
N
1:N 1:N
q(z" NNy = T g (2™ ™)
n=1

Each z(™ has its own parameters that will be estimated during the inference

For example

o z(”) IS a Gaussian random variable
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Amortized Variational Inference (ll)

Instead of estimating w(”) directly, we can design a function f¢(+) and
compute 1™ as

where £ is the parameter set for function f
For example

o (W) om)) = f(2™;¢)

e |In variational auto-encoder, this function is a network and is called
Inference network or recognition network
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Variational Auto-encoder

Input - Ideally they are identical.

Probabilistic Encoder

9¢(2[x)

Mean 7

x ~ x'

Sampled
latent vector

o
Std. dev

Z=u+o@®Ee
e ~N(0,I)

,._.

______________________ »

/

Probabilistic
Decoder

Po(x|2)

—~—

An compressed low dimensional
representation of the input.

Reconstructed
input
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Amortized Variational Inference (lli)

Amortized inference: reduce the cost of per-example inference on qﬁ(”) by
training a model f(x; &) that shared across all examples

w = f(a;6)

o With amortized variational inference, the variational parameter set will be
changed from {4(™} to ¢

« With f(+; )
o It Is much easier to handle new examples, e.g., during testing phase

o It can also reduce the number of parameters (e.g., consider 1M
examples)
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Issues

Consider the difference:

{9} vs. {£ (=™, )}
e The performance of amortized inference depends on the choice of function

]l.‘

e Often, f(w(”); f) can only give sub-optimal solutions, compared with the
direct estimation of zp('"“), which is called the amortization gap.
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Thank You!
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