CS 8501 Advanced Topics In
Machine Learning

Lecture 07: Variational Inference

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://yangfengji.net/


https://yangfengji.net/

Posterior Inference



A Simple Problem Setup

Consider the following graphical model
x — D

where D is the observation (a set of training examples) and x is the latent
variable.



Problem Setup

x— D
This is actually a generic setup of generative modeling.
Depending how we interpret  and D, it can be mapped to many problems

e Clustering: x Is the cluster index variable
e Dimension reduction: x is the low-dimensional representation

e Supervised learning: x represents the model parameter of a supervised
model



Inference

Assume we know the parameter of the following two components

° p(w; Hprz’or)

e p(D | z) = [[,; p(di | ; Opir)
The inference problem is to estimate the posterior distribution of 2 given D and
its prior distribution p(x), p(z | D)
Recall that
p(D | z)p(z)

p(D)

p(z | D) =



Conjugate Family
If we pick the special pair of prior p(x) and likelihood function p(D | x), we
can compute the analytical form

e p(D | x): Bernoulli; p(x): Beta

e p(D | x): Gaussian; p(x): Gaussian (assume the covariance matrix is I)

In many cases, computing an analytical posterior (mostly, because of p(D)) IS
Impossible



Variational Inference



Basic Idea

Assume p(x | D) is intractable, variational inference proposes to
approximate p(x | D) with another distribution g(x).

Following our discussion in the previous lecture, we have two options to
measure the distribution difference with KL divergence:

1. KL|p(z|D)||q(=). _f p(z|D) log ((‘))d:c

2. KL|q(z)||p(z|D) _f q(x 1Og |))da3




Basic Idea (ll)

e As KL divergence is not symmetric,

KL|p||q] # KL{q||p)
o Using KL|g(z)||p(x | D)]| is mostly due to some practical reasons

KLg(z)|p(z|D)] = — / 1(2) log p(z|D) — H(q)

as most of the computation is about g(x), this formula gives more weight
on picking a suitable approximation distribution



Remaining Question
With
KLg(z)|p(z|D)] = — / 1(z) log p(|D) — H(q)

the underlying assumption is that we know p(x|D).

However, most of the time, computing g(|D) itself is the main challenge
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Evidence Lower Bound

Recall p(z|D) = p(@é)f;(x) , we have

/ a(2) log p(z|D) — / a(2) log p(Dlz) + / a(z)log p(z) — / 1(z) log p(D)

Therefore,

KLlg(z)|p(|D)] = — / q(z)logp(D | «) + KL|g(z)|[p(z)] + log p(D)
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Evidence Lower Bound (ELBO0)

Note that
KLq|lp] = — / 1) log p(D | z) + KL[g(2) | p(2)] + log p(D)
Since KL|q||p] > 0, we have
log p(D) > / o(z)1og p(D | z) — KL{q(z)p(z)]

In other words, RHS is the lower bound of the (log-) evidence log p(D)
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Optimization

Bring back the parameters of these distributions, variational inference can be
reduced to the following optimization problem

min [ q(z59)logp(D | 2:6) + KLla(a; @) p(a; )

With 6 and ¢ explicitly written in the above equation to represent the
parameters for original data distribution and the variational distribution.
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An Alternative Derivation

We can get the same objective function by starting from log p(D)

. — 10 €T . Tr — 10 £, p(ﬂD;‘Q)
logp(D;0) =1 g/xp( D; 0)dx =1 g/wq( ) q(x; @)

With Jensen's inequality, we have

0g5(D30) > [ ala; 6)1og 2005
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An Alternative Derivation (ll)

[, a(z; ) log Zr20) =
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Example: Gaussian Distributions

Consider the following Gaussian distribution p(z) = N (u, A)

1 A1l A2
— A —
H ( 2 ) ( A1z A22 )

The variational distribution g(x) is defined as the product of two 1-D Gaussian
distributions

Q(w) — N($13m170%) 'N(e’l?z;mm(f%)

16



Example: Gaussian Distributions (ll)

With both of them are Gaussian distributions, we can calculate the closed-form
solution

Q(w) :N(ml;mlaa%) 'N(e’l?z;mm(f%)
S U% — )‘_11503 — )‘2_21
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Further Comments

GivenD = {d,,...,d,}

e In probabilistic modeling, p(d; | ) and g(x) are often formulated with
traditional probability distribution

e In the context of deep learning, each of them can be represented with a
neural network

p(d; | *) = a neural network model

g(z) = another neural network model
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Forward vs. Reverse KL

e Forward:

KLp||q —/p( )1 8 o)
e Reverse:

KL|q||p] —/Q( )1 8 ()

The key to understand the difference is to imagine a case where p(x) or
q(z) =0
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Example

(c)

Figure 21.1 [Illustrating forwards vs reverse KL on a bimodal distribution. The blue curves are the contours
of the true distribution p. The red curves are the contours of the unimodal approximation g. (a) Minimizing
forwards KL: ¢ tends to “cover” p. (b-c) Minimizing reverse KL: ¢ locks on to one of the two modes. Based
on Figure 10.3 of (Bishop 2006b). Figure generated by XKLfwdReverseMixGauss.
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Example (ll)
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Figure 21.2 Illustrating forwards vs reverse KL on a symmetric Gaussian. The blue curves are the
contours of the true distribution p. The red curves are the contours of a factorized approximation q. (a)

Minimizing KL (q||p). (b) Minimizing KL (p||q). Based on Figure 10.2 of (Bishop 2006b). Figure generated
by KLpqGauss.

21



The Mean Field Method
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Example: Gaussian Distribution

Recall the previous example:

1 A1l A2
— A —
H ( 2 ) ( A1z A22 )

The variational distribution g(x) is defined as the product of two 1-D Gaussian
distributions

C](CU) — N(fﬂl;mlaa%) 'N(ﬂiz;mmag)
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General Form

In general, the mean field method consider g(x) as a fully factored distribution.
If « is the multi-variate random vector x = (1, ..., Z,), the g(x) is defined
as

q(z) = H Gn(Tn)
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Ising Model: Definition

The definition of Ising models with z € {—1, +1}%

p(x; B,J) = Z(; 7) exp(—BE(z; J))

e the energy function is defined as

E(x;J) = —; Z Jrin L L, — Z h, .,

where J = {Jn, hn}

e In this example, let's assume we know the parameters J -- we will remove
this assumption in the next section
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Ising Model: Variational Distribution

We define the variational distribution with parameter a = {a,, }as

q(z; a)

e Fully factorized: g(z;a) = [ ], gn(%n; an)
e Probability

g(zn = +1;a,) x exp(an); q(@n = —15a,) =ox exp(

e Expectation

_an)
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Objective Function

We follow the notation in statistical physics and use <->q to represent the
expectation under distribution q

With the variational distribution, we have
KL[q(z; a)|[p(z; B, J)] = —(log p(z; B, J))q — H(q)
Minimizing the KL divergence will give us the g(x; a) involves two terms

e the expectation term

e the entropy term
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The Entropy Term

As q(x; a) can be fully factorized, each entropy of ¢(x,; a,,) can be computed
Independently

1 1
H(Qn) — Qn(xn = +1; an) log

+ q,(x, = —1;a,)lo
an(@n = 1Tyan) 0 Jlog o = Tiay)

both gy, () is a function of the variational parameter a,
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The Expectation Term

Now consider the expectation term:

(log p(z; B, J))q = (—log Z(B,J) — BE(x; J))q = —log Z(B, J) — B(E(z; J))q

Because of the independence defined in g(x; a), we have
(BE(x;J))g = —= Z Jrin T Ly, — Z h,T.

where x,, is the expectation x,, under the distribution gy (a:n; a,n). In other
words, &, is the a function of a,,.

29



VI as Optimization

Given

KLl|g(z; a)|lp(z; B8, J)] = —(log p(=; B, J))q — H(g)
as a function of a.

Take the derivative of KL|q(x; a)||p(x; B8, J)| with respect to a,,, we have

aAp = /B(Z Jmna_jm + hn)

With a,,, we can decode x,, with by taking the mode or the average
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Thank You!
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