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Posterior Inference
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A Simple Problem Setup
Consider the following graphical model

x → D

where  is the observation (a set of training examples) and  is the latent
variable.

D x
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Problem Setup
x → D

This is actually a generic setup of generative modeling.

Depending how we interpret  and , it can be mapped to many problems

Clustering:  is the cluster index variable

Dimension reduction:  is the low-dimensional representation

Supervised learning:  represents the model parameter of a supervised
model

x D

x

x

x
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Inference
Assume we know the parameter of the following two components

The inference problem is to estimate the posterior distribution of  given  and
its prior distribution , 

Recall that

p(x ∣ D) =  

p(D)
p(D ∣ x)p(x)

p(x; θ  )prior

p(D ∣ x) =  p(d  ∣∏i=1
n

i x; θ  )lik

x D

p(x) p(x ∣ D)
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Conjugate Family
If we pick the special pair of prior  and likelihood function , we
can compute the analytical form

: Bernoulli; : Beta

: Gaussian; : Gaussian (assume the covariance matrix is )

In many cases, computing an analytical posterior (mostly, because of ) is
impossible

p(x) p(D ∣ x)

p(D ∣ x) p(x)

p(D ∣ x) p(x) I

p(D)
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Variational Inference
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Basic Idea
Assume  is intractable, variational inference proposes to
approximate  with another distribution .

Following our discussion in the previous lecture, we have two options to
measure the distribution difference with KL divergence:

1. 

2. 

p(x ∣ D)
p(x ∣ D) q(x)

KL[p(x∣D)∥q(x)] =  p(x∣D) log  dx∫
x q(x)

p(x∣D)

KL[q(x)∥p(x∣D)] =  q(x) log  dx∫
x p(x∣D)

q(x)
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Basic Idea (II)
As KL divergence is not symmetric,

KL[p∥q] = KL[q∥p]

Using  is mostly due to some practical reasons

KL[q(x)∥p(x∣D)] = − q(x) log p(x∣D) −∫ H(q)

as most of the computation is about , this formula gives more weight
on picking a suitable approximation distribution

KL[q(x)∥p(x ∣ D)]

q(x)
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Remaining Question
With

KL[q(x)∥p(x∣D)] = − q(x) log p(x∣D) −∫ H(q)

the underlying assumption is that we know .

However, most of the time, computing  itself is the main challenge

p(x∣D)

q(x∣D)
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Evidence Lower Bound
Recall , we have

q(x) log p(x∣D) =∫ q(x) log p(D∣x) +∫ q(x) log p(x) −∫ q(x) log p(D)∫

Therefore,

KL[q(x)∥p(x∣D)] = − q(x) log p(D ∣∫ x) + KL[q(x)∥p(x)] + log p(D)

p(x∣D) =  

p(D)
p(D∣x)p(x)
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Evidence Lower Bound (ELBo)
Note that

KL[q∥p] = − q(x) log p(D ∣∫ x) + KL[q(x)∥p(x)] + log p(D)

Since , we have

log p(D) ≥ q(x) log p(D ∣∫ x) − KL[q(x)∥p(x)]

In other words, RHS is the lower bound of the (log-) evidence 

KL[q∥p] ≥ 0

log p(D)
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Optimization
Bring back the parameters of these distributions, variational inference can be
reduced to the following optimization problem

 − q(x;ϕ) log p(D ∣
θ,ϕ

min ∫ x; θ) + KL[q(x;ϕ)∥p(x; θ)]

With  and  explicitly written in the above equation to represent the
parameters for original data distribution and the variational distribution.

θ ϕ

13



An Alternative Derivation
We can get the same objective function by starting from 

log p(D; θ) = log  p(x∣D; θ)dx =∫
x

log  q(x;ϕ)  ∫
x q(x;ϕ)

p(x∣D; θ)

With Jensen's inequality, we have

log p(D; θ) ≥  q(x;ϕ) log  ∫
x q(x;ϕ)

p(x∣D; θ)

log p(D)
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An Alternative Derivation (II)
 q(x;ϕ) log  =∫

x q(x;ϕ)
p(x∣D;θ)
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Example: Gaussian Distributions
Consider the following Gaussian distribution 

μ =  Λ =(
μ  1

μ  2
)   (

λ  11

λ  12

λ  12

λ  22
)

The variational distribution  is defined as the product of two 1-D Gaussian
distributions

q(x) = N (x  ;m  , σ  ) ⋅1 1 1
2 N (x  ;m  , σ  )2 2 2

2

p(x) = N (μ, Λ)

q(x)
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Example: Gaussian Distributions (II)
With both of them are Gaussian distributions, we can calculate the closed-form
solution

q(x) = N (x  ;m  , σ  ) ⋅1 1 1
2 N (x  ;m  , σ  )2 2 2

2

σ  =1
2 λ  ; σ  =11

−1
2
2 λ  22

−1

m  =1 μ  −1 λ  λ  (m  −11
−1

12 2 μ  );m  =2 2 μ  −2 λ  λ  (m  −22
−1

21 1 μ  )1
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Further Comments
Given 

In probabilistic modeling,  and  are often formulated with
traditional probability distribution

In the context of deep learning, each of them can be represented with a
neural network

p(d  ∣i x) = a neural network model

q(x) = another neural network model

D = {d  , … , d  }1 n

p(d  ∣i x) q(x)
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Forward vs. Reverse KL
Forward:

KL[p∥q] = p(x) log  ∫
q(x)
p(x)

Reverse:

KL[q∥p] = q(x) log  ∫
p(x)
q(x)

The key to understand the difference is to imagine a case where  or p(x)
q(x) ≈ 0
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Example
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Example (II)
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The Mean Field Method
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Example: Gaussian Distribution
Recall the previous example:

μ =  Λ =(
μ  1

μ  2
)   (

λ  11

λ  12

λ  12

λ  22
)

The variational distribution  is defined as the product of two 1-D Gaussian
distributions

q(x) = N (x  ;m  , σ  ) ⋅1 1 1
2 N (x  ;m  , σ  )2 2 2

2

q(x)
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General Form
In general, the mean field method consider  as a fully factored distribution.
If  is the multi-variate random vector , the  is defined
as

q(x) =  q  (x  )
n

∏ n n

q(x)
x x = (x  , … , x  )1 n q(x)
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Ising Model: Definition
The definition of Ising models with 

p(x; β, J) =  exp(−βE(x; J))
Z(β, J)

1

the energy function is defined as

E(x; J) = −   J  x  x  −
2
1

m,n

∑ mn m n  h  x  

n

∑ n n

where 

In this example, let's assume we know the parameters  -- we will remove
this assumption in the next section

x ∈ {−1, +1}N

J = {J  ,h  }mn n

J
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Ising Model: Variational Distribution
We define the variational distribution with parameter as

q(x; a) =  exp(  a  x  )
Z(a)

1

n

∑ n n

Fully factorized: 

Probability

q(x  =n +1; a  ) ∝n exp(a  ); q(x  =n n −1; a  ) =∝n exp(−a  )n

Expectation

 =x̄n  x  q(x  ) =
x  n

∑ n n  =
e + ea  n −a  n

e − ea  n −a  n

tanh(a  )n

a = {a  }n

q(x; a) =  q  (x  ; a  )∏n n n n
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Objective Function
We follow the notation in statistical physics and use  to represent the
expectation under distribution 

With the variational distribution, we have

KL[q(x; a)∥p(x; β, J)] = −⟨log p(x; β, J)⟩  −q H(q)

Minimizing the KL divergence will give us the  involves two terms

the expectation term

the entropy term

⟨⋅⟩  q

q

q(x; a)
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The Entropy Term
As  can be fully factorized, each entropy of  can be computed
independently

H(q  ) =n q  (x  =n n +1; a  ) log  +n
q  (x  = +1; a  )n n n

1
q  (x  =n n −1; a ) log  n

q  (x  = −1; a  )n n n

1

both  is a function of the variational parameter 

q(x; a) q(x  ; a  )n n

q  (x  )n n a  n
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The Expectation Term
Now consider the expectation term:

⟨log p(x; β, J)⟩  =q ⟨− logZ(β, J) − βE(x; J)⟩  =q − logZ(β, J) − β⟨E(x; J)⟩  q

Because of the independence defined in , we have

⟨E(x; J)⟩  =q −   J    −
2
1

m,n

∑ mnx̄mx̄n  h   

n

∑ nx̄n

where  is the expectation  under the distribution . In other
words,  is the a function of .

q(x; a)

 x̄n x  n q  (x  ; a  )n n n

 x̄n a  n
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VI as Optimization
Given

KL[q(x; a)∥p(x; β, J)] = −⟨log p(x; β, J)⟩  −q H(q)

as a function of .

Take the derivative of  with respect to , we have

a  =n β(  J   +
m

∑ mnx̄m h  )n

With , we can decode  with by taking the mode or the average

a

KL[q(x; a)∥p(x; β, J)] a  n

a  n x  n
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Thank You!
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