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Entropy



Entropy

The entropy of a random variable X is defined as the average Shannon
Information content

Zp z)logp(X = )

Recall the definition of expectation, it can also be written as
H(X) = E,[log p(X)

where E,|-] is the expectation under the distribution p



Maximum Entropy

The discrete distribution with maximum entropy is the uniform distribution.

For Bernoulli distribution p(X = z) = 0%(1 — 0)' %, the entropy H (p) with
respect to different 6

p(X = 1)



Properties of Entropy

« H(X) > 0 with equality if and only if p(z) = 1 for a specific X = x

» For discrete random variable, entropy is maximized if p(X) is uniform

1
H(X) < ZglonglogK

where K is the number of possible values that X can take

e Therefore, we have

0<H(X)<logK



Cross Entropy

The cross entropy between distribution p and g is defined by

K
H(p,q) = — > pilogg
k=1

where pr, = p(X = k) and ¢ = q(X = k)

« H(p, q) is the expected number of bits needed to compress some data
samples
o from distribution p

o using a code based on distribution g



Cross Entropy and MLE

Consider the following two distributions

e Empirical distribution p(Y = y* | ) = 1, otherwise 0
e Predictive distribution ¢(Y =y | )

The cross entropy of these two distributions is

Zp =k |z)logq(Y =k|z) = —logq(Y = y" | z)

which is equivalent to the negative log likelihood



Joint Entropy

If X and Y follow the joint distribution p(X, Y'), then their entropy is defined
as

H(X,Y)=-) p(X,Y)logp(X,Y)

e In general, we have
max{H(X),HY)} <HX,Y)=HX)+HY | X)=HY)+HY | X) < HX)+ H()
which can be verified by the definition

e When X 1l Y, we have

H(X,Y)=H(X)+ H(Y)



Conditional Entropy

The conditional entropy of Y given X is the uncertainty we have in Y after
knowing X :

H(Y|X)=->) p(x,y)logp(ylz) = H(X,Y) - H(X)

Y

Intuitively,
H(Y|X) < H(Y)
with equality if and only if X and Y are independent



Chain Rule

The chain rule for entropy is

H(X1,Xs,...,X,) =Y H(Xi|Xy,...,X;1)
1=1
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Perplexity

The perplexity of a discrete probability distribution p is defined as
PPLx(p) = 27P)

« H(p): the average length of binary code that we need to represent
message X

e 2H(P): the essential number of messages in X
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Perplexity: A Simple Example

Consider two extreme cases of the Bernoulli distribution
Caselp(X =1)=1landp(X =0)=0
PPLx(p) =2" =1
Case2p(X =1)=p(X =0)=0.5
PPLx(p) = 2! =2
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Perplexity: A Further Example

Consider a categorical distribution with the sample space size K, if

MX=M:;

then, the perplexity of this distribution is
PPLx(p) = 257 = gloe & _ g

On average, the model is perplexed with PPLx(p) of outputs
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Perplexity in Language Modeling

e A language model is a probabilistic model that can predict the next word
based on the preceding context p(X;| X1.;1)

e With a given text, we can evaluate the model performance with
p(zt|T1:4-1) = (Xt = 2| X1:0—1 = T1:4-1)
e The cross entropy (NLL) of the given text is —% > logp(xt|1:6-1)

e The perplexity of a language model on the given text

1 S 2_% Zt log p(z¢|z1:4-1) S %4

where V is the size of the sample space of X (aka, the vocabulary size)
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Relative Entropy
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Relative Entropy

The relative entropy or Kullback-Leibler divergence is to measure the
difference between two distribution p(X) and g(X ) defined on the same
sample space

L(plq) = Zp ) log g

Similar to the definition of entropy, relative entropy can also be viewed as an
expectation of function

KL = E,[log ZLw)]

q(z)
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Relative Entropy and Cross Entropy

Relative entropy is the difference between cross entropy H (p, q) and the
entropy H (p)

1 1
KL(p|lq) = E,|log —— — log ——
Therefore

KL(p|lq) = H(p,q) — H(p) > 0

This equation lays the foundation of variational inference, where q Is the
empirical distribution built over data
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Convex Functions

A function f(z) is concave over (a, b) if every chord of the function lies above
the function. In other words, for all 1, 2 € (a,b) and 0 < A < 1, we have

FAzr + (1= A)z2) > Af(21) + (1 — A)f(z2)
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Jensen's Inequality

For any concave function f,

f(z NiT;) > Z Aif (z;)

where A; > 0and ) " A; =1
It f(z) = log(x),

log E[f(x)] > E[log f(z)]
Therefore,

KL[p||q] > 0
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Forward vs Reverse KL

Consider the problem of approximating

e a distribution p with

e a simpler distribution g with either,

there are two ways to formulate this problem
» Forward KL: KL[p||q] = [ p(z)log ¥ dx
X

wd
)
)d

z)
(z)
» Backward KL: KL[q||p] = [ ¢(z) log %
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Forward KL

KL[p||q] = /p(w) log

e Blue: true distribution p

e Red: approximation distribution q

Mdm

q(z)
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Reverse KL

KL[g|p] = / q(z) log

e Blue: true distribution p

e Red: approximation distribution q

p(z) ’
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Comparison

In practice, reverse KL is more popularly used, as

e it can identify the modes

e the expectation is easier to compute
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Mutual Information
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Definition
Mutual information between two random variable X and Y is defined as the
difference between
e the joint distribution p(X,Y")
e the product of two marginal distributions p(X ) and p(Y")
p
I(X;Y) = KL[p(X,Y)|p(X)p(Y)] = > p(X,Y)log .

L,Y
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Properties

e I(X;Y) > 0, the equality holds iff p(X, Y ) = p(X)p(Y ), in other
words X 1 Y

« I(X;Y)=HX)-HX |Y)=H(Y)—-H(Y | X)

e Consider a classification problem, where X is input and Y is output

(label)
o H(Y): the uncertainty of Y

o H(Y | X): the remaining uncertainty of Y after knowing X
o I(X;Y): how much we know about Y™ after knowing X
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Relationship

The relationship between joint entropy, marginal entropy, conditional entropy,

and mutual information

H(X,Y)

H(X)

HX|Y)
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The Data Processing Theorem

Consider the dependency relation specified by a Markov chain
X —Z-=Y
the mutual information satisfies the following inequality
I(X,Y)<I(X,Z)

which is also called the data processing inequality.
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The Data Processing Theorem (ll)
I(X,Y) <I(X, Z)

e The message conveyed by this inequality implies that data processing can
only destroy information
o It is not necessarily a bad thing, if our goal is to predict Z

e For example, consider the following realization of the three random
variables
o X the original text

o /' the bag-of-words representation of text X

o Y : classification label about X
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Information Bottleneck: Problem Definition

Based on (Tishby et al., 2000):

o X: the original signal
e /' the quantization of X

e Y :the variable of interest
Expectation:

e / to be as simple as possible

e / capture as much of the information about Y as possible
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Information Bottleneck: Formulation

The mathematical formulation of the information bottleneck is
min I(X; Z) — BI(Z;Y)
where [ is a hyper-parameter

Interpretation: Z behaves as a bottleneck that filters information from X as
much as possible, while keep the information useful for Y

e 8 —0
e J —
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Information Bottleneck: Applications

e Information bottleneck formulation: X — 27 — Y

e For every word z in the vocabulary, defined as Z; = R, v, where
R, € {0,1} and v,, is the corresponding word embedding

e Information bottleneck can identify important words for the task and assign
with high weights

funnest tastiest friendliest
topno[ch — \ Foe r—del.ectable‘ yummy

craveable~~ awsome
0.8

enjoyable - delish

o
)

Importance score

o
3}




Thank You!
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