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Entropy
The entropy of a random variable  is defined as the average Shannon
information content

H(X) = −  p(X =
x

∑ x) log p(X = x)

Recall the definition of expectation, it can also be written as

H(X) = E  [− log p(X)]p

where  is the expectation under the distribution 

X

E  [⋅]p p
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Maximum Entropy
The discrete distribution with maximum entropy is the uniform distribution.

For Bernoulli distribution , the entropy  with
respect to different 

p(X = x) = θ (1 −x θ)1−x H(p)
θ
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Properties of Entropy
 with equality if and only if  for a specific 

For discrete random variable, entropy is maximized if  is uniform

H(X) ≤   logK =
x

∑
K

1
logK

where  is the number of possible values that  can take

Therefore, we have

0 ≤ H(X) ≤ logK

H(X) ≥ 0 p(x) = 1 X = x

p(X)

K X
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Cross Entropy
The cross entropy between distribution  and  is defined by

H(p, q) = −  p  log q  

k=1

∑
K

k k

where  and 

 is the expected number of bits needed to compress some data
samples

from distribution 

using a code based on distribution 

p q

p  =k p(X = k) q  =k q(X = k)

H(p, q)

p

q
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Cross Entropy and MLE
Consider the following two distributions

Empirical distribution , otherwise 0

Predictive distribution 

The cross entropy of these two distributions is

H(p, q) = −  p(Y =
k

∑ k ∣ x) log q(Y = k ∣ x) = − log q(Y = y ∣∗ x)

which is equivalent to the negative log likelihood

p(Y = y ∣∗ x) = 1
q(Y = y ∣ x)
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Joint Entropy
If  and  follow the joint distribution , then their entropy is defined
as

H(X,Y ) = − p(X,Y ) log p(X,Y )∑

In general, we have
max{H(X),H(Y )} ≤ H(X,Y ) = H(X) + H(Y ∣ X) = H(Y ) + H(Y ∣ X) ≤ H(X) + H(Y )

which can be verified by the definition

When , we have

H(X,Y ) = H(X) + H(Y )

X Y p(X,Y )

X ⊥⊥ Y
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Conditional Entropy
The conditional entropy of  given  is the uncertainty we have in  after
knowing :

H(Y ∣X) = −  p(x, y) log p(y∣x) =
x,y

∑ H(X,Y ) − H(X)

Intuitively,

H(Y ∣X) ≤ H(Y )

with equality if and only if  and  are independent

Y X Y

X

X Y
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Chain Rule
The chain rule for entropy is

H(X  ,X  , … ,X  ) =1 2 n  H(X  ∣X  , … ,X  )
i=1

∑
n

i 1 i−1
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Perplexity
The perplexity of a discrete probability distribution  is defined as

PPLx(p) = 2H(p)

: the average length of binary code that we need to represent
message 

: the essential number of messages in 

p

H(p)
X

2H(p) X
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Perplexity: A Simple Example
Consider two extreme cases of the Bernoulli distribution

Case 1  and 

PPLx(p) = 2 =0 1

Case 2 

PPLx(p) = 2 =1 2

p(X = 1) = 1 p(X = 0) = 0

p(X = 1) = p(X = 0) = 0.5
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Perplexity: A Further Example
Consider a categorical distribution with the sample space size , if

p(X = k) =  

K

1

then, the perplexity of this distribution is

PPLx(p) = 2 =H(p) 2 =log K K

On average, the model is perplexed with  of outputs

K

PPLx(p)
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Perplexity in Language Modeling
A language model is a probabilistic model that can predict the next word
based on the preceding context 

With a given text, we can evaluate the model performance with

p(x  ∣x  ) =t 1:t−1 p(X  =t x  ∣X  =t 1:t−1 x  )1:t−1

The cross entropy (NLL) of the given text is 

The perplexity of a language model on the given text

1 ≤ 2 ≤−   log p(x  ∣x  )T
1 ∑t t 1:t−1 V

where  is the size of the sample space of  (aka, the vocabulary size)

p(X  ∣X )t 1:t−1

−   log p(x  ∣x  )
T
1 ∑t t 1:t−1

V X
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Relative Entropy
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Relative Entropy
The relative entropy or Kullback-Leibler divergence is to measure the
difference between two distribution  and  defined on the same
sample space

KL(p∥q) =  p(x) log  

x

∑
q(x)
p(x)

Similar to the definition of entropy, relative entropy can also be viewed as an
expectation of function

KL = E  [log  ]p
q(x)
p(x)

p(X) q(X)
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Relative Entropy and Cross Entropy
Relative entropy is the difference between cross entropy  and the
entropy 

KL(p∥q) = E  [log  −p
q(x)

1
log  ]

p(x)
1

Therefore

KL(p∥q) = H(p, q) − H(p) ≥ 0

This equation lays the foundation of variational inference, where  is the
empirical distribution built over data

H(p, q)
H(p)

q
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Convex Functions
A function  is concave over  if every chord of the function lies above
the function. In other words, for all  and , we have

f(λx  +1 (1 − λ)x  ) ≥2 λf(x  ) +1 (1 − λ)f(x  )2

f(x) (a, b)
x  , x  ∈1 2 (a, b) 0 ≤ λ ≤ 1
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Jensen's Inequality
For any concave function ,

f(  λ  x  ) ≥
i=1

∑
n

i i  λ  f(x  )
i=1

∑
n

i i

where  and 

If ,

logE[f(x)] ≥ E[log f(x)]

Therefore,

KL[p∥q] ≥ 0

f

λ  ≥i 0  λ  =∑i=1
n

i 1

f(x) = log(x)
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Forward vs Reverse KL
Consider the problem of approximating

a distribution  with

a simpler distribution  with either,

there are two ways to formulate this problem

Forward KL: 

Backward KL: 

p

q

KL[p∥q] = p(x) log  dx∫
q(x)
p(x)

KL[q∥p] = q(x) log  dx∫
p(x)
q(x)
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Forward KL

KL[p∥q] = p(x) log  dx∫
q(x)
p(x)

Blue: true distribution 

Red: approximation distribution 

p

q
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Reverse KL

KL[q∥p] = q(x) log  dx∫
p(x)
q(x)

Blue: true distribution 

Red: approximation distribution 

p

q
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Comparison
In practice, reverse KL is more popularly used, as

it can identify the modes

the expectation is easier to compute
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Mutual Information
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Definition
Mutual information between two random variable  and  is defined as the
difference between

the joint distribution 

the product of two marginal distributions  and 

I(X;Y ) = KL[p(X,Y )∥p(X)p(Y )] =  p(X,Y ) log  

x,y

∑
p(X)p(Y )
p(X,Y )

X Y

p(X,Y )

p(X) p(Y )
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Properties
, the equality holds iff , in other

words 

Consider a classification problem, where  is input and  is output
(label)

: the uncertainty of 

: the remaining uncertainty of  after knowing 

: how much we know about  after knowing 

I(X;Y ) ≥ 0 p(X,Y ) = p(X)p(Y )
X ⊥ Y

I(X;Y ) = H(X) − H(X ∣ Y ) = H(Y ) − H(Y ∣ X)
X Y

H(Y ) Y

H(Y ∣X) Y X

I(X;Y ) Y X
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Relationship
The relationship between joint entropy, marginal entropy, conditional entropy,
and mutual information
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The Data Processing Theorem
Consider the dependency relation specified by a Markov chain

X → Z → Y

the mutual information satisfies the following inequality

I(X,Y ) ≤ I(X,Z)

which is also called the data processing inequality.
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The Data Processing Theorem (II)
I(X,Y ) ≤ I(X,Z)

The message conveyed by this inequality implies that data processing can
only destroy information

It is not necessarily a bad thing, if our goal is to predict 

For example, consider the following realization of the three random
variables

: the original text

: the bag-of-words representation of text 

: classification label about 

Z

X

Z X

Y X
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Information Bottleneck: Problem Definition
Based on (Tishby et al., 2000):

: the original signal

: the quantization of 

: the variable of interest

Expectation:

 to be as simple as possible

 capture as much of the information about  as possible

X

Z X

Y

Z

Z Y
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Information Bottleneck: Formulation
The mathematical formulation of the information bottleneck is

min I(X;Z) − βI(Z ;Y )

where  is a hyper-parameter

Interpretation:  behaves as a bottleneck that filters information from  as
much as possible, while keep the information useful for 

β

Z X

Y

β → 0

β → ∞
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Information Bottleneck: Applications
Information bottleneck formulation: 

For every word  in the vocabulary, defined as , where 
 and  is the corresponding word embedding

Information bottleneck can identify important words for the task and assign
with high weights

X → Z → Y

x  t Z  =t R  v  x  t t

R  ∈x  t {0, 1} v  x  t
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Thank You!
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