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Introduction



Other Names

Undirected graphical models (UGMSs) also have some other names in the
literature, e.qg.,

e Markov random fields

e Markov networks



Markov Random Fields

MRFs are more natural to represent some data, for example, images
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Conditional Independence

For sets of nodes A, B, and C
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if and only if C' separates A from B in the graph G

by removing all the nodes in C' and the connected edges, then see
whether there is a path connecting a node in A with a node in B



Example
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where B C V\ A U C'is a subset of any other nodes



Conditional Independence: Pairwise

Two random variables are independent from each other, if the paths connected
these two random variables are all blocked by observed variables
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Markov Blanket

Markov blanket: the set of nodes mb(¢) that renders a node ¢ conditionally
Independent of all other nodes in the graph.
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e (a): mb(18) = {3,4,7,9,12,13}
e (b): mb(18) ={3,7,9,13}



Conditional Independence: Local
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Conditional Independence: Global

X 4 and X g are independent, if there is no path from between A and B given

C
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Conditional Independence

There are three types of conditional independence

e Pairwise independence
e Local independence

e Global independence
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Moralization

e Moralization: the process of converting a directed graph to a undirected
graph

e To avoid introducing incorrect conditional independence, the
moralization process needs to add some extra edges.
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Comparison

e I-map: G is an I-map of a distribution p, if I(G) C I(p)
e Perfect map: if I(G) — I(P)

e Directed graphs and undirected graphs are perfect maps for different sets
of distribution, unless the graph is a chordal graph

Probabilistic Models

Graphical Models

Undirected




Chordal Graphs

A chordal graph is a simple graph in which every graph cycle of length four and
greater has a cycle chord.
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Some Examples MRFs
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Ising Models

Consider the image example with binary pixel values, where x,,, and x,, are
two neighbor pixels
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Unlike directed graphical models that can specify conditional independence for
any two given adjacent random variables, formulation on undirected graphical 17
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Ising Models: From Energy Function to
Probabilitic Model

e Energy function

E(x;J,H) { Z J na:ma:n—l—ZHwn}
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e The sign of J indicates whether we want to encourage x,, and x,, to have
the same value

e The sign of H indicates what value we want each individual x,, to have

e Probabilistic formulation

p(z; B, J, H) < exp|—BE(z; J, H)]
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Ising Models: Partition Function

1
(8,J,H)

p(z; 8, J, H) = - exp|—BE(z; J, H)]

where
Z(B,J,H) =" exp[-BE(z;J,H)|

IS the partition function.
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Boltzmann Distribution

Boltzmann distribution (also called Gibbs distribution) is a distribution can
be formulated as

p(z) o« exp[—E(z;0)]

where E(a:; 9) is an energy function and 6 represents the parameter of this

function.
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Generalization of Ising Models

e Potts models
e Hopfield networks
e Boltzmann machines

e Restricted Boltzmann machines
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Potts Models

Potts models: by extending x,, from binary random variable to x,, €
{1,2,..., K}, and J is in a matrix form as

J = |J]

and J;; indicates the interaction between ,, = 7 and x,, = j

Figure 19.8 Visualizing a sample from a 10-state Potts model of size 128 x 128 for different association
strengths: (@) J = 1.42, (b) J = 1.44, (c) J = 1.46. The regions are labeled according to size: blue is
largest, red is smallest. Used with kind permission of Erik Sudderth. See gibbsDemoIsing for Matlab
code to produce a similar plot for the Ising model.
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Hopfield Networks

Hopfield networks: by extending Ising models to a fully-connected graph, with
Jmn = Jnm, €ach x,, can still be binary

I
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E(x;J,H) = —— Z.Imnwmwn Zhna}n

o Hopfield networks can also defined on the image cases

e Essentially, it iIntroduce more dependence on the graph
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Hopfield Networks (ll)

Because of the dependence between any two nodes, the correlation can act as
some kind of memory to constrain the values between nodes. For example

Hopfield Demo

Training Image

Test Image
60% Occlusion

Interm Result
After 5 Iterations

Recoverd Image

Figure 19.7 Examples of how an associative memory can reconstruct images. These are binary images
of size 50 x 50 pixels. Top: training images. Row 2: partially visible test images. Row 3: estimate after 24
5 iterations. Bottom: final state estimate. Based on Figure 2.1 of Hertz et al. (1991). Figure generated by

1T YT OIS



Boltzmann Machines

Boltzmann Machines is a generalization of the Hopfield networks with latent
variables
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Restricted Boltzmann machine

The energy function of the RBM
E(x,z;J,U H) = — ZJmna:mzn — Zumxm — Zhnzn
m,n m n

Visible
Nodes

This architecture provides the possibility of building multi-layer hidden
variables.
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RBMs for Pre-training

From [Hinton et al., 2006; Science]

Pretraining Unrolling

This work marks the beginning of deep learning

Fine-tuning
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Parameterization of MRFs

e Representing the joint distribution for a UGM is less natural than for a
DGM
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Hammersley-Clifford Theorem

A positive distribution p(y) > () satisfies the CI properties of an undirected
graph G iff p can be represented as a product of factors, one per maximal
cligue, I.e.,

p(y | 6) = H%yc!@

where C is the set of all the (maximal) cliques of G, and Z(8) is the partition

function given by
= | EAAA
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Thank You!
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