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Introduction
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Other Names
Undirected graphical models (UGMs) also have some other names in the
literature, e.g.,

Markov random fields

Markov networks
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Markov Random Fields
MRFs are more natural to represent some data, for example, images
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Conditional Independence
Properties
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Conditional Independence
For sets of nodes , , and 

x  ⊥  A G x  ∣B x  C

if and only if  separates  from  in the graph 

by removing all the nodes in  and the connected edges, then see
whether there is a path connecting a node in  with a node in 

A B C

C A B G

C

A B
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Example

In this figure, if  and  then

x  ⊥A x  ∣B x  C

where  is a subset of any other nodes

A = {8} C = {3, 7, 9, 13}

B ⊆ V\A ∪ C
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Conditional Independence: Pairwise
Two random variables are independent from each other, if the paths connected
these two random variables are all blocked by observed variables

X  ⊥1 ⊥ X  ∣rest7
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Markov Blanket
Markov blanket: the set of nodes  that renders a node  conditionally
independent of all other nodes in the graph.

(a): 

(b): 

mb(t) t

mb(18) = {3, 4, 7, 9, 12, 13}
mb(18) = {3, 7, 9, 13}
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Conditional Independence: Local
X  ⊥1 ⊥ rest∣mb(X  )1
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Conditional Independence: Global
 and  are independent, if there is no path from between  and  given

{X  ,X  } ⊥1 2 ⊥ {X  ,X  }∣{X  ,X  ,X  }6 7 3 4 5

X  A X  B A B

C
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Conditional Independence
There are three types of conditional independence

Pairwise independence

Local independence

Global independence
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Moralization
Moralization: the process of converting a directed graph to a undirected
graph

To avoid introducing incorrect conditional independence, the
moralization process needs to add some extra edges.
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Comparison
I-map: G is an I-map of a distribution , if 

Perfect map: if 

Directed graphs and undirected graphs are perfect maps for different sets
of distribution, unless the graph is a chordal graph

p I(G) ⊆ I(p)
I(G) = I(p)
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Chordal Graphs
A chordal graph is a simple graph in which every graph cycle of length four and
greater has a cycle chord.
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Some Examples MRFs
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Ising Models
Consider the image example with binary pixel values, where  and  are
two neighbor pixels

E(x; J ,H) = −[   J  x  x  +
2
1

(m,n)∈G

∑ mn m n  Hx  ]
n

∑ n

Unlike directed graphical models that can specify conditional independence for
any two given adjacent random variables, formulation on undirected graphical
models mostly focuses on "interaction"

x  m x  n

17



Ising Models: From Energy Function to
Probabilitic Model

Energy function

E(x; J ,H) = −[   J  x  x  +
2
1

(m,n)∈G

∑ mn m n  Hx  ]
n

∑ n

The sign of  indicates whether we want to encourage  and  to have
the same value

The sign of  indicates what value we want each individual  to have

Probabilistic formulation

p(x; β, J ,H) ∝ exp[−βE(x; J ,H)]

J x  m x  n

H x  n
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Ising Models: Partition Function

p(x; β, J ,H) =  exp[−βE(x; J ,H)]
Z(β, J ,H)

1

where

Z(β, J ,H) =  exp[−βE(x; J ,H)]
x

∑

is the partition function.
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Boltzmann Distribution
Boltzmann distribution (also called Gibbs distribution) is a distribution can
be formulated as

p(x) ∝ exp[−E(x; θ)]

where  is an energy function and  represents the parameter of this
function.

E(x; θ) θ
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Generalization of Ising Models
Potts models

Hopfield networks

Boltzmann machines

Restricted Boltzmann machines
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Potts Models
Potts models: by extending  from binary random variable to 

, and  is in a matrix form as

J = [J  ]ij

and  indicates the interaction between  and 

x  n x  ∈n

{1, 2, … ,K} J

J  ij x  =m i x  =n j
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Hopfield Networks
Hopfield networks: by extending Ising models to a fully-connected graph, with 

, each  can still be binary

E(x; J ,H) = −   J  x  x  −
2
1

m,n

∑ mn m n  h  x  

n

∑ n n

Hopfield networks can also defined on the image cases

Essentially, it introduce more dependence on the graph

J  =mn J  nm x  n
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Hopfield Networks (II)
Because of the dependence between any two nodes, the correlation can act as
some kind of memory to constrain the values between nodes. For example
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Boltzmann Machines
Boltzmann Machines is a generalization of the Hopfield networks with latent
variables

25



Restricted Boltzmann machine
The energy function of the RBM

E(x, z; J ,U ,H) = −  J  x  z  −
m,n

∑ mn m n  u  x  −
m

∑ m m  h  z  

n

∑ n n

This architecture provides the possibility of building multi-layer hidden
variables.
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RBMs for Pre-training
From [Hinton et al., 2006; Science]

This work marks the beginning of deep learning 27



Parameterization of MRFs
Representing the joint distribution for a UGM is less natural than for a
DGM
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Hammersley-Clifford Theorem
A positive distribution  satisfies the CI properties of an undirected
graph  iff  can be represented as a product of factors, one per maximal
clique, i.e.,

p(y ∣ θ) =   ψ  (y  ∣
Z(θ)

1

c∈C

∏ c c θ  )c

where  is the set of all the (maximal) cliques of , and  is the partition
function given by

Z(θ) =   ψ  (y  ∣
x

∑
c∈C

∏ c c θ  )c

p(y) > 0
G p

C G Z(θ)
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Thank You!
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