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Introduction
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Central Questions
How can we compactly represent the joint distribution ?

How can we use this distribution to infer one set of variables given another
in a reasonable amount of computation time?

How can we learn the parameters of this distribution with a reasonable
amount of data?

p(x ∣ θ)
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Number of Parameters
Assume each  is a random variable with  possible values, how many
parameters that we need to represent the following distribution?

p(x  )1:V

x  i T
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Example
Consider a joint distribution on , where each 

Without any assumption, we need each  represent a specific
probability of

p(x  =1 i, x  =2 j, x  =3 k) = θ  ijk

In total, we need  parameters 
Because 

(x  , x  , x  )1 2 3 x  ∈i {1, … ,T}

θijk

T −3 1 θ = {θ  }ijk

   θ  =∑i ∑j ∑k ijk 1
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Factorization
What if there is no independence assumption, and just factorize the distribution
as

p(x  , x  , x  ) =1 2 3 p(x  ) ⋅1 p(x  ∣2 x  ) ⋅1 p(x  ∣3 x  , x  )?1 2

:  parameters

:  parameters

:  parameters

In total, 

p(x  )1 T − 1
p(x  ∣2 x  )1 T (T − 1)

p(x  ∣3 x  , x  )1 2 T (T −2 1)
T −3 T +2 T −2 T + T − 1 = T −3 1
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Independence
If all three random variable are independent with each other, then we can
factorize the joint distribution as

p(x  , x  , x  ) =1 2 3 p(x  ) ⋅1 p(x  ) ⋅2 p(x  )3

Each  need  parameters

In total, we need  parameters

p(x  )i T − 1
3(T − 1)
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Efficient Representation
The essence of efficient representation is independence

In many cases, we need to exploit the (conditional) independence of
random variables for efficient representation
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Conditional Independence
 and  are conditionally independent given , denoted

X ⊥⊥ Y ∣Z

if and only if the joint probability can be written as

p(X,Y ∣ Z) = p(X ∣ Z)p(Y ∣ Z)

X Y Z
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Markov Chains
Consider the distribution  with , we have

p(x  , x  , x  ) =1 2 3 p(x  )p(x  ∣1 2 x  )p(x  ∣1 3 x  , x  )2 1

with  we have

p(x  , x  , x  ) =1 2 3 p(x  )p(x  ∣1 2 x  )p(x  ∣1 3 x  )2

which is a first-order Markov chain

A first-order Markov chain with discrete values can be fully described by

the initial state , and

the state transition matrix 

p(x  , x  , x  )1 2 3 x  ⊥1 ⊥ x  ∣x  3 2

p(x  ∣3 x  , x  ) =2 1 p(x  ∣3 x  )2

p(x  =1 i)
p(x  =t j ∣ x  =t−1 i)
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Graphical Models
A graphical model is a way to represent a joint distribution with its conditional
independence

Based on the graphical properties, there are two kinds graphical models
Directed graphs: Bayes nets (this lecture)

Undirected graphs: Markov random fields (next lecture)
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Graph Terminology
Graph

Nodes: parent nodes, children nodes, etc

Edges

Adjacency matrix

Directed vs. undirected

Cycle (or loop)

Directed acyclic graph (DAG)

More in section 10.1.4
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Topological Ordering
A topological ordering is a numbering of the nodes such that parents have
lower numbers than their children.
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Directed Graphical Models
Different names refer to the same thing

Directed graphical models: the most descriptive name

Bayesian networks (Bayes nets): not related to Bayes' rule

Belief networks: probability represents subjective belief

Causal networks: directed arrows are sometimes interpreted as
representing causal relations
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Ordered Markov Property
In a DAG, a node only depends on its immediate parents, not on all ancestors

x ⊥⊥ x  ∣x  anc(x)\pa(x) pa(x)

Consider the following Markov chain

⋯ → x  →t−2 x  →t−1 x  →t ⋯

In general, we have

p  (x  ) =G 1:V  p(x  ∣
t=1

∏
V

t x  )pa(t)
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Factorization
Recall that the conditional independence can help us simplify the factorization.
For the following running example, we have

p(x  ) =1:5 p(x  )p(x  ∣x  )p(x  ∣x  )p(x  ∣x  , x  )p(x  ∣x  )1 2 1 3 1 4 2 3 5 3
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Examples
This section focuses on graphical representations

Inference will be discussed in the next section
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Naive Bayes Classifiers
The graphical representation of 

p(X  ,Y ) =1:4 p(Y )  p(X  ∣
t=1

∏
4

t Y )

Shaded notes are observed

p(X  ,Y )1:4
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Plate Notation
Plate notation is a useful graphical representation for conditionally IID
examples

p(θ,X) = p(θ){  p(X  ∣
i=1

∏
N

i θ)}
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Markov Chains
First and second order Markov chains

Transition probability: Each component in the factorization, such as

 in the first order case

 in the second order case

p(X  ∣t X  )t−1

p(X  ∣t X  ,X  )t−1 t−2
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Hidden Markov Models
A first-order hidden Markov models

Two building blocks

Transition probability (or transition model): 

Emission probability (or observation model): 

p(z  =t j ∣ z  =t−1 i) = a  ij

p(x  =t k ∣ z  =t j) = b  jk

21



Hidden Markov Models (II)
With continuous observations

Transition probability (or transition model): 

Emission probability (or observation model): 

More content about hidden Markov models: [Murphy, 2012; Chapter 17]

p(z  =t j ∣ z  =t−1 i) = a  ij

p(x  =t k ∣ z  =t j) =
N (μ  , σ  )j j

2
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State Space Models
Continuous variables on both hidden states and observations

Transition model: 

Observation model: 

Linear dynamic systems:

z  =t g(u  , z  , ε  )t t−1 t

x  =t h(z  , u  , δ  )t t t

z  =t A  z  +t t−1 B  u  +t t ε  t

x  =t C  z  +t t D  u  +t t δ  t 23



State Space Models: Predictions
Three different types of predictions in State Space Models

More content about state space models: [Murphy, 2012; Chapter 18] 24



Dynamic Bayesian Networks
Discrete-state DBN

HMMs

Factorial HMMs

Hierarchical HMMs

...

Continuous-state DBN
KFM

Switching KFM

...

More information: [Murphy 2002, PhD Dissertation] 25



Inference
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Inference
A typical task of inference is to estimate the conditional probability of hidden
variables  given visible variable 

p(x  ∣h x  , θ) =v  =
p(x  ∣ θ)v

p(x  , x  ∣ θ)h v
 

 p(x  , x  ∣ θ)∑x  h
′ h

′
v

p(x  , x  ∣ θ)h v

Computing  is non-trivial

x  h x  v

 p(x  , x  ∣∑x  h
′ h

′
v θ)
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Discrete Random Variables
Consider the previous example, if the goal is to estimate 

, then

p(x  , x  , x  ∣1 2 3 x  , x  ) =4 5  

p(x , x  )4 5

p(x  , x  , x  , x  , x  )1 2 3 4 5

A straightforward way of computation

p(x  , x ) =4 5  p(x )p(x ∣x )p(x ∣x )p(x ∣x , x  )p(x  ∣x  )
x  ,x  ,x  1 2 3

∑ 1 2 1 3 1 4 2 3 5 3

The number of summation operations:  where  is the number of values
for each random variable 

p(x  ∣4

x  , x  , x  , x  )1 2 3 5

K3 K

x  j
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An Alternative Way
Another way of computation

p(x  , x  ) =4 5  {  p(x  )p(x  ∣x  )p(x  ∣x  )}p(x  ∣x  , x  )p(x  ∣x  )
x  ,x  2 3

∑
x  1

∑ 1 2 1 3 1 4 2 3 5 3

The number of summation 

The benefit will be more significant, if the probability distribution has large 
, many random variables, and sparse dependency

K + K2

K
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Sum-product Algorithm
Essentially, the idea in the following formula is switching the sum and
product operations based on dependency. Therefore, it is also called the
sum-product algorithm.

p(x  , x  ) =4 5  {  p(x  )p(x  ∣x  )p(x  ∣x  )}p(x  ∣x  , x  )p(x  ∣x  )
x  ,x  2 3

∑
x  1

∑ 1 2 1 3 1 4 2 3 5 3

A general version of this algorithm can be used to compute conditional
probability directly

Another name of this algorithm: belief propagation
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Last Comments
Variational inference and sampling methods offer two different ways to handle
this problem
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Learning
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Foreword
There is no direct relation between Bayesian networks and Bayesian statistics.
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Difference between Learning and Inference
In general, three categories of variables on graph

: visible variables

: hidden variables

: model parameter as in 

The difference between inference and learning

Inference: estimate the probability of  given 

Learning: estimate , usually a point estimate

x  v

x  h

θ p(x  , x  ∣v h θ)

x  h x  v

θ
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MAP
A typical way of learning in graphical models is MAP

=θ̂ argmax  log p(θ) +θ  log p(x  ∣
i=1

∑
N

v
(i) θ)

where

 is the index of training examples

 is the likelihood of visible variables only

log p(x  ∣v
(i) θ) = log  p(x  , x  ∣

x  h

∑ v
(i)

h θ)

i

log p(x  ∣v
(i)

θ)
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Marginal Likelihood
Computing the marginal likelihood

p(x  ; θ) =v  p(x  , x  ; θ)
v  h

∑ v h

is the challenge not only for inference but also learning.
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Learning
Learning from complete data: With all variable observed, we have
likelihood

log p(x; θ) = log p(x  ∣∏ t x  ; θ) =pa(x  )t log p(x  ∣∑ t x  ; θ)pa(x  )t

Learning with hidden variables: will be discussed in the future lectures
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Conditional Independence
Based on section 10.5
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Three Basic Directed Graph Structures
Markov Chain

X → Y → Z

Conditional independence

X ⊥⊥ Z

X ⊥⊥ Z ∣Y
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Three Basic Directed Graph Structures (II)
Common Cause

X ← Y → Z

Conditional independence

The Beer and Diapers story

X ⊥⊥ Z

X ⊥⊥ Z ∣Y
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Three Basic Directed Graph Structures (III)
Explaining Away (also called the v-structure in the textbook)

X → Y ← Z

Conditional independence

One event can be caused by two reasons, the identification of one reason
will reduce the probability about another reason happened.

X ⊥⊥ Z

X ⊥⊥ Z ∣Y
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Example
Reading independence from graph

 ?

 ?

 ?

X  ⊥2 ⊥ X  5

X  ⊥2 ⊥ X  ∣X  5 1

X  ⊥2 ⊥ X  ∣X  ,X  5 1 4
42



Thank You!
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