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Introduction
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Interpretation of Probability
Frequentist: probability is the long-run frequency of repeatable
experiments

Flip a coin

Toss a dice

Bayesian: probability is a degree of (personal) belief
The probability of a nuclear war (or betting on any non-repeatable
future event)

Machine learning researchers use both of them, depending what they want
to do
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Frequentist Statistics
Assume an underlying true data distribution 

Data sampled from this distribution is called sampling distribution 

Estimating the parameter based on the sampling distribution as

=θ̂ argmax   p(D ∣θ θ)

p∗

D ∼ p∗
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Bayesian Statistics
In Bayesian approach, we treat the parameter  as a random variable

Using the posterior distribution to summarize the information of  is at the
core of Bayesian statistics.

p(θ ∣ D) =  =
p(D)

p(D ∣ θ)p(θ)
 

 p(D ∣ θ)p(θ)∫
θ

p(D ∣ θ)p(θ)

θ

θ
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Bayesian Statistics (II): Posterior Distribution

p(θ ∣ D) =  =
p(D)

p(D ∣ θ)p(θ)
 

 p(D ∣ θ)p(θ)∫
θ

p(D ∣ θ)p(θ)

Here, we assume  is a continuous random variable

 is called marginal likelihood or evidence

The computation of  is usually the key challenge of Bayesian
inference

θ

p(D)

p(D)
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Bayesian Statistics (III): Predictive Probability
To make a prediction on a new data point , we have

p(x ∣ D) =  p(x ∣∫
θ

θ)p(θ ∣ D)dθ

Which consider all the possible values of  based on the probability distribution

x

θ

p(θ ∣ D)
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Summarizing Posterior Distribution
The issues of MAP

The advantage of inference with posterior distributions
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Maximum A Posteriori (MAP)
It is a point estimate from the posterior distribution

 ←θ̂MAP argmax   p(θ ∣θ D)

Some alternative formulations

It is not necessary to actually compute the posterior distribution

←θ̂ argmax  log p(θ ∣θ D)

←θ̂ argmax  log p(θ) +θ log p(D ∣ θ)
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MAP Estimation
MAP estimation gives a point estimation of 

=θ̂ argmax  p(θ ∣θ D)

Or equivalently

=θ̂ argmax  p(D ∣θ θ) ⋅ p(θ) = argmax  {log p(D ∣θ θ) + log p(θ)}

which avoid the computation of , but this is not a full Bayesian method.

θ

p(D)
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MAP with a Gaussian Prior
Consider the log form:

=θ̂ argmax  {log p(D ∣θ θ) + log p(θ)}

If  is defined as the Gaussian distribution , then MAP is
equivalent to learning with  regularization

=θ̂ argmax  {log p(D ∣θ θ) − λ∥θ∥  }2
2

where  is the regularization parameter.

p(θ) N (θ; 0, 1/λ)
ℓ  2

λ
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Issues with MAP
The mode is an untypical point

 ←θ̂MAP argmax  p(θ ∣θ D)
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Issues with MAP (II)
No measure of uncertainty

 v.s. p(θ ∣θ̂MAP D)

Considering the uncertainty of , expectation is the best way of summarizing
the randomness

p(x ∣ D) =  p(x ∣∫
θ

θ)p(θ ∣ D) = E [p(x ∣p(θ∣D) θ)]

θ
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Issues of MAP (III)
Plugging in the MAP estimate can result in overfitting

Predictive distribution can be over-confident if not modeling the uncertainty
of parameters, which is a common problem of any point estimate methods

Example:

=θ̂ argmax  {log p(D ∣θ θ) − λ∥θ∥  }2
2

The limitation of  regularization for avoiding overfitting.ℓ  2
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Issues of MAP (IV)
MAP estimation is not invariant to reparametrization: consider

 follows a Gaussian distribution

 is a nonlinear function

Finding the mode of  may not help finding the model of 

X

f : X → Y

X Y
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Inference with Posterior
From (Murphy, 2012):

"For example, suppose you are about to buy something from Amazon.com,
and there are two sellers offering it for the same price. Seller 1 has 90 positive
reviews and 10 negative reviews. Seller 2 has 2 positive reviews and 0
negative reviews. Who should you buy from?"
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Inference with MLE
Let  and  be the unknown reliabilities of the two sellers

Seller 1: 90 positive reviews; 10 negative reviews

Seller 2: 2 positive reviews; 0 negative reviews

MLE of 

θ  1 θ  2

θ

θ  =1,MLE 0.9
θ  =2,MLE 1.0
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Inference with MAP
Assume the uniform prior 

The posterior of each 

MAP, also the mode of each Beta posterior

The results are not surprising

θ  ∼i Beta(1, 1)
θ  i

p(θ  ∣1 D  ) =1 Beta(91, 11)
p(θ  ∣2 D  ) =2 Beta(3, 1)

θ  =1,MAP  =
α+β−2
α−1 0.9

θ  =2,MAP 1.0
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Inference with the Whole Posterior Distribution
Consider  and  are both random variables, both of them can pick
values between 0 and 1

The question of seller 1 is better than seller 2 is formulated as

p(θ  >1 θ  ∣2 D)

Compute  as

p(θ  >1 θ  ∣2 D) = I(θ  >∫∫ 1 θ  )p(θ  ∣2 1 D  )p(θ  ∣1 2 D  ) =2 0.710

θ  1 θ  2

p(θ  >1 θ  ∣2 D)
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Inference with the Whole Posterior Distribution
(II)
Why even a uniform prior can help?
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Why Bayesian Approach?
Observations:

Three methods: MLE, MAP, and Bayesian approach

Two of them agree with each other

Then

Why we prefer the Bayesian approach?
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Another Interpretation
Assume we only have sufficient data for seller 1 to use the frequentist
approach

The reliability of seller 1 is

=θ̂ 0.9

Assume all reviews are independent, then what is the chance that seller 1
have at least one negative reviews in the first two reviews?
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Why Bayesian Approach?
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Arguments for Bayesian Approach
Exchangeable A sequence of random variable  is infinitely
exchangeable, if for any  the joint probability  is invariant to
permutation of the indices

p(x  , … , x  ) =1 n p(x  , … , x  )π  1 π  n

Consider a set of images  with a common background 
 are not independent

 are exchangeable

(x  , x  , … )1 2

n p(x  , … , x  )1 n

(x  , … , x  )1 n x  0

(x  +1 x  , … , x  +0 n x  )0

(x  +1 x  , … , x  +0 n x  )0
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Arguments for Bayesian Approach (II)
De Finetti’s theorem 
A sequence of random variable  is infinitely exchangeable if and
only if, for all , we have

p(x  , … , x  ) =1 n p(θ)  p(x  ∣∫
i=1

∏
n

i θ)dθ

where  is some hidden common random variable (possibly infinite
dimensional). That is,  are iid conditional on .

The existence of a hidden variable 

(x  , x  , … , )1 2

n

θ

{x  }i θ

θ
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Arguments for Bayesian Approach (III)
Online Learning 
The posterior can be further updated with new datasets, which provides an
approach to continual learning

p(θ ∣ D  ) ∝1:t p(D  ∣t θ) ⋅ p(θ ∣ D  )1:t−1

26



Priors
Part of the content is selected from Chapter 03 of The Bayesian Choice (2007)
by Christian Robert.
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Difficulty of Selecting Priors
[Robert, 2007]: Undoubtedly, the most critical and most criticized point of
Bayesian analysis deals with the choice of the prior distribution, since, once
this prior distribution is known, inference can be led in an almost mechanic way
by

minimizing posterior losses,

computing higher posterior density regions, or

integrating out parameters to nd the predictive distribution.

28



Difficulty of Selecting Priors (II)
[Robert, 2007]: the systematic use of

parameterized distributions (like the normal, gamma, beta, etc.) and

the further reduction to conjugate distributions

cannot be justied at all times, since they trade an improvement in the
analytical treatment of the problem for the subjective determination of the prior
distribution and may therefore ignore part of the prior information.
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Difficulty of Selecting Priors (III)
[Robert, 2007]

Ungrounded prior distributions produce unjustified posterior inference
It is always possible to choose a prior distribution that gives the
answer one wishes

There is no such thing as the prior distribution, except for very special
settings
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Justification of Selecting Priors
Conjugate priors

Maximum entropy priors

Non-informative priors
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Conjugate Priors
A prior  is a conjugate prior for a likelihood function  if
the posterior is in the same parameterized family as the prior, i.e., 

.

In previous discussion, we have seen two examples of conjugate priors
Beta distribution for the binomial model

Dirichlet distribution for the multinomial model

p(θ) ∈ F p(D ∣ θ)
p(θ ∣

D) ∈ F
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Non-informative Priors
Derive the priors from the sample distribution (aka, the data)

Laplace's prior: give the same likelihood to each value of the parameter
(Principle of Insufficient Reasoning)

The Jeffreys prior: based on the likelihood function

π(θ) ∝ (I(θ))  2
1

where

I(θ) = E[(  ) ]
∂θ

∂ log p(X ∣ θ) 2
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Maximum Entropy Priors
Entropy of a (prior) distribution  is defined as

H(p) = −  p(θ) log p(θ)
θ

∑

or

H(p) = −  p(θ) log p(θ)dθ∫
θ

Maximum entropy distributions

Discrete random variable: uniform distribution

Continuous random variable with a given variance : Gaussian

p(θ)

σ2
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Maximum Entropy Priors (II)
Assume  is a binary random variable, then its entropy is defined as

H(p) = −θ log θ − (1 − θ) log(1 − θ)

With , we have

θ =  

2
1

θ

 =
dθ

dH(p) 0
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Hierarchical Bayes
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Hierarchical Prior
η → θ → D

the prior distribution of  is 

 also has its own parameters (usually, pre-defined hyper-parameters)

 can just be an non-informative prior

θ p(θ ∣ η)
p(η)

p(η)
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Modeling Related Cancer Rates
Consider the problem of predicting cancer rates in several cities

: number of people in city 

: number of people in city  who died of cencer

x ∼ Bin(N  , θ  )i i

N  i i

x  i i

38



Two Simple Estimation
Estimate  individually for each city

Probably not enough data

Estimate all 's as one single value 

=θ
~

 

 N  ∑i i

 x  ∑i i

θ  i

θ  i θ
~
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Modeling with a Hierarchical Prior

p(D, θ, η ∣ N) = p(η)  {Bin(x  ∣
i=1

∏ i N  , θ  )Beta(θ ∣i i i η)}

where 

For example,

each of them could be a Gamma distribution

η = (a, b)

p(η) = p(a) ⋅ p(b)
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Meta Learning
Based on Grant et al., 2018
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Meta Learning
A family of tasks 

A dataset  collected for the tasks 

The tasks share some common structure such that learning to solve a
single task has the potential to aid in solving another

T

D T
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MAML
The MAML (Model-Agnostic Meta-Learning) updateing rule

where

: a small sample of data from task 

: another sample of data from the same task

x  , … , x  ∼j  1 j  N p  (x)T  j j

x  , … , x  ∼j  N+1 j  N+M p  (x)T  j

43



Graphical Representations

Mathematical formulation:
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Approximation
Hierarchical Bayesian model:

MAML as an approximation:
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Thank You!
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