CS 8501 Advanced Topics in Machine Learning

Lecture 03: Bayesian Statistics

Yangfeng Ji
Information and Language Processing Lab
Department of Computer Science
University of Virginia
https://yangfengji.net/

Introduction

Interpretation of Probability

- Frequentist: probability is the long-run frequency of repeatable experiments
- Flip a coin
- Toss a dice
- Bayesian: probability is a degree of (personal) belief
- The probability of a nuclear war (or betting on any non-repeatable future event)
- Machine learning researchers use both of them, depending what they want to do

Frequentist Statistics

- Assume an underlying true data distribution p^{*}
- Data sampled from this distribution is called sampling distribution $\mathcal{D} \sim p^{*}$
- Estimating the parameter based on the sampling distribution as

$$
\hat{\theta}=\operatorname{argmax}_{\theta} p(\mathcal{D} \mid \theta)
$$

Bayesian Statistics

- In Bayesian approach, we treat the parameter θ as a random variable
- Using the posterior distribution to summarize the information of θ is at the core of Bayesian statistics.

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{\int_{\theta} p(\mathcal{D} \mid \theta) p(\theta)}
$$

Bayesian Statistics (II): Posterior Distribution

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{\int_{\theta} p(\mathcal{D} \mid \theta) p(\theta)}
$$

- Here, we assume θ is a continuous random variable
- $p(\mathcal{D})$ is called marginal likelihood or evidence
- The computation of $p(\mathcal{D})$ is usually the key challenge of Bayesian inference

Bayesian Statistics (III): Predictive Probability

To make a prediction on a new data point x, we have

$$
p(x \mid \mathcal{D})=\int_{\theta} p(x \mid \theta) p(\theta \mid \mathcal{D}) d \theta
$$

Which consider all the possible values of θ based on the probability distribution $p(\theta \mid \mathcal{D})$

Summarizing Posterior Distribution

- The issues of MAP
- The advantage of inference with posterior distributions

Maximum A Posteriori (MAP)

It is a point estimate from the posterior distribution

$$
\hat{\theta}_{M A P} \leftarrow \operatorname{argmax}_{\theta} p(\theta \mid \mathcal{D})
$$

Some alternative formulations

- $\hat{\theta} \leftarrow \operatorname{argmax}_{\theta} \log p(\theta \mid \mathcal{D})$
- $\hat{\theta} \leftarrow \operatorname{argmax}_{\theta} \log p(\theta)+\log p(\mathcal{D} \mid \theta)$
- It is not necessary to actually compute the posterior distribution

MAP Estimation

MAP estimation gives a point estimation of θ

$$
\hat{\theta}=\operatorname{argmax}_{\theta} p(\theta \mid \mathcal{D})
$$

Or equivalently

$$
\hat{\theta}=\operatorname{argmax}_{\theta} p(\mathcal{D} \mid \theta) \cdot p(\theta)=\operatorname{argmax}_{\theta}\{\log p(\mathcal{D} \mid \theta)+\log p(\theta)\}
$$

which avoid the computation of $p(\mathcal{D})$, but this is not a full Bayesian method.

MAP with a Gaussian Prior

Consider the log form:

$$
\hat{\theta}=\operatorname{argmax}_{\theta}\{\log p(\mathcal{D} \mid \theta)+\log p(\theta)\}
$$

If $p(\theta)$ is defined as the Gaussian distribution $\mathcal{N}(\theta ; 0,1 / \lambda)$, then MAP is equivalent to learning with ℓ_{2} regularization

$$
\hat{\theta}=\operatorname{argmax}_{\theta}\left\{\log p(\mathcal{D} \mid \theta)-\lambda\|\theta\|_{2}^{2}\right\}
$$

where λ is the regularization parameter.

Issues with MAP

The mode is an untypical point

$$
\hat{\theta}_{M A P} \leftarrow \operatorname{argmax}_{\theta} p(\theta \mid \mathcal{D})
$$

(a)

(b)

Issues with MAP (II)

No measure of uncertainty

$$
\hat{\theta}_{M A P} \quad \text { v.s. } \quad p(\theta \mid \mathcal{D})
$$

Considering the uncertainty of θ, expectation is the best way of summarizing the randomness

$$
p(x \mid \mathcal{D})=\int_{\theta} p(x \mid \theta) p(\theta \mid \mathcal{D})=\mathbb{E}_{p(\theta \mid \mathcal{D})}[p(x \mid \theta)]
$$

Issues of MAP (III)

Plugging in the MAP estimate can result in overfitting

- Predictive distribution can be over-confident if not modeling the uncertainty of parameters, which is a common problem of any point estimate methods
- Example:

$$
\hat{\theta}=\operatorname{argmax}_{\theta}\left\{\log p(\mathcal{D} \mid \theta)-\lambda\|\theta\|_{2}^{2}\right\}
$$

The limitation of ℓ_{2} regularization for avoiding overfitting.

Issues of MAP (IV)

MAP estimation is not invariant to reparametrization: consider

- X follows a Gaussian distribution
- $f: X \rightarrow Y$ is a nonlinear function

Finding the mode of X may not help finding the model of Y

Inference with Posterior

From (Murphy, 2012):
"For example, suppose you are about to buy something from Amazon.com, and there are two sellers offering it for the same price. Seller 1 has 90 positive reviews and 10 negative reviews. Seller 2 has 2 positive reviews and 0 negative reviews. Who should you buy from?"

Inference with MLE

Let θ_{1} and θ_{2} be the unknown reliabilities of the two sellers

- Seller 1: 90 positive reviews; 10 negative reviews
- Seller 2: 2 positive reviews; 0 negative reviews

MLE of θ

- $\theta_{1, M L E}=0.9$
- $\theta_{2, M L E}=1.0$

Inference with MAP

- Assume the uniform prior $\theta_{i} \sim \operatorname{Beta}(1,1)$
- The posterior of each θ_{i}
- $p\left(\theta_{1} \mid \mathcal{D}_{1}\right)=\operatorname{Beta}(91,11)$
- $p\left(\theta_{2} \mid \mathcal{D}_{2}\right)=\operatorname{Beta}(3,1)$
- MAP, also the mode of each Beta posterior
- $\theta_{1, M A P}=\frac{\alpha-1}{\alpha+\beta-2}=0.9$
- $\theta_{2, M A P}=1.0$
- The results are not surprising

Inference with the Whole Posterior Distribution

- Consider θ_{1} and θ_{2} are both random variables, both of them can pick values between 0 and 1
- The question of seller 1 is better than seller 2 is formulated as

$$
p\left(\theta_{1}>\theta_{2} \mid \mathcal{D}\right)
$$

- Compute $p\left(\theta_{1}>\theta_{2} \mid \mathcal{D}\right)$ as

$$
p\left(\theta_{1}>\theta_{2} \mid \mathcal{D}\right)=\iint I\left(\theta_{1}>\theta_{2}\right) p\left(\theta_{1} \mid \mathcal{D}_{1}\right) p\left(\theta_{2} \mid \mathcal{D}_{2}\right)=0.710
$$

Inference with the Whole Posterior Distribution (II)

Why even a uniform prior can help?

Why Bayesian Approach?

Observations:

- Three methods: MLE, MAP, and Bayesian approach
- Two of them agree with each other

Then

- Why we prefer the Bayesian approach?

Another Interpretation

- Assume we only have sufficient data for seller 1 to use the frequentist approach
- The reliability of seller 1 is

$$
\hat{\theta}=0.9
$$

- Assume all reviews are independent, then what is the chance that seller 1 have at least one negative reviews in the first two reviews?

Why Bayesian Approach?

Arguments for Bayesian Approach

Exchangeable A sequence of random variable $\left(x_{1}, x_{2}, \ldots\right)$ is infinitely exchangeable, if for any n the joint probability $p\left(x_{1}, \ldots, x_{n}\right)$ is invariant to permutation of the indices

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)
$$

- Consider a set of images $\left(x_{1}, \ldots, x_{n}\right)$ with a common background x_{0}
- $\left(x_{1}+x_{0}, \ldots, x_{n}+x_{0}\right)$ are not independent

。 $\left(x_{1}+x_{0}, \ldots, x_{n}+x_{0}\right)$ are exchangeable

Arguments for Bayesian Approach (II)

De Finetti's theorem

A sequence of random variable $\left(x_{1}, x_{2}, \ldots,\right)$ is infinitely exchangeable if and only if, for all n, we have

$$
p\left(x_{1}, \ldots, x_{n}\right)=\int p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) d \theta
$$

where θ is some hidden common random variable (possibly infinite dimensional). That is, $\left\{x_{i}\right\}$ are iid conditional on θ.

- The existence of a hidden variable θ

Arguments for Bayesian Approach (III)

Online Learning

The posterior can be further updated with new datasets, which provides an approach to continual learning

$$
p\left(\theta \mid \mathcal{D}_{1: t}\right) \propto p\left(\mathcal{D}_{t} \mid \theta\right) \cdot p\left(\theta \mid \mathcal{D}_{1: t-1}\right)
$$

Priors

Part of the content is selected from Chapter 03 of The Bayesian Choice (2007) by Christian Robert.

Difficulty of Selecting Priors

[Robert, 2007]: Undoubtedly, the most critical and most criticized point of Bayesian analysis deals with the choice of the prior distribution, since, once this prior distribution is known, inference can be led in an almost mechanic way by

- minimizing posterior losses,
- computing higher posterior density regions, or
- integrating out parameters to find the predictive distribution.

Difficulty of Selecting Priors (II)

[Robert, 2007]: the systematic use of

- parameterized distributions (like the normal, gamma, beta, etc.) and
- the further reduction to conjugate distributions
cannot be justified at all times, since they trade an improvement in the analytical treatment of the problem for the subjective determination of the prior distribution and may therefore ignore part of the prior information.

Difficulty of Selecting Priors (III)

[Robert, 2007]

- Ungrounded prior distributions produce unjustified posterior inference
- It is always possible to choose a prior distribution that gives the answer one wishes
- There is no such thing as the prior distribution, except for very special settings

Justification of Selecting Priors

- Conjugate priors
- Maximum entropy priors
- Non-informative priors

Conjugate Priors

- A prior $p(\theta) \in \mathcal{F}$ is a conjugate prior for a likelihood function $p(\mathcal{D} \mid \theta)$ if the posterior is in the same parameterized family as the prior, i.e., $p(\theta \mid$ $\mathcal{D}) \in \mathcal{F}$.
- In previous discussion, we have seen two examples of conjugate priors
- Beta distribution for the binomial model
- Dirichlet distribution for the multinomial model

Non-informative Priors

- Derive the priors from the sample distribution (aka, the data)
- Laplace's prior: give the same likelihood to each value of the parameter (Principle of Insufficient Reasoning)
- The Jeffreys prior: based on the likelihood function

$$
\pi(\theta) \propto(I(\theta))^{\frac{1}{2}}
$$

where

$$
I(\theta)=\mathbb{E}\left[\left(\frac{\partial \log p(X \mid \theta)}{\partial \theta}\right)^{2}\right]
$$

Maximum Entropy Priors

Entropy of a (prior) distribution $p(\theta)$ is defined as

$$
H(p)=-\sum_{\theta} p(\theta) \log p(\theta)
$$

or

$$
H(p)=-\int_{\theta} p(\theta) \log p(\theta) d \theta
$$

Maximum entropy distributions

- Discrete random variable: uniform distribution
- Continuous random variable with a given variance σ^{2} : Gaussian

Maximum Entropy Priors (II)

Assume θ is a binary random variable, then its entropy is defined as

$$
H(p)=-\theta \log \theta-(1-\theta) \log (1-\theta)
$$

With $\frac{d H(p)}{d \theta}=0$, we have

$$
\theta=\frac{1}{2}
$$

Hierarchical Bayes

Hierarchical Prior

$$
\eta \rightarrow \theta \rightarrow \mathcal{D}
$$

- the prior distribution of θ is $p(\theta \mid \eta)$
- $p(\eta)$ also has its own parameters (usually, pre-defined hyper-parameters)
- $p(\eta)$ can just be an non-informative prior

Modeling Related Cancer Rates

Consider the problem of predicting cancer rates in several cities

- N_{i} : number of people in city i
- x_{i} : number of people in city i who died of cencer

$$
x \sim \operatorname{Bin}\left(N_{i}, \theta_{i}\right)
$$

Two Simple Estimation

- Estimate θ_{i} individually for each city
- Probably not enough data
- Estimate all θ_{i} 's as one single value $\tilde{\theta}$

$$
\tilde{\theta}=\frac{\sum_{i} x_{i}}{\sum_{i} N_{i}}
$$

Modeling with a Hierarchical Prior

$$
p(\mathcal{D}, \theta, \eta \mid N)=p(\eta) \prod_{i=1}\left\{\operatorname{Bin}\left(x_{i} \mid N_{i}, \theta_{i}\right) \operatorname{Beta}\left(\theta_{i} \mid \eta\right)\right\}
$$

where $\eta=(a, b)$
For example,

- $p(\eta)=p(a) \cdot p(b)$
- each of them could be a Gamma distribution

Meta Learning

- Based on Grant et al., 2018

Meta Learning

- A family of tasks \mathcal{T}
- A dataset \mathcal{D} collected for the tasks \mathcal{T}
- The tasks share some common structure such that learning to solve a single task has the potential to aid in solving another

MAML

The MAML (Model-Agnostic Meta-Learning) updateing rule

$$
\mathcal{L}(\boldsymbol{\theta})=\frac{1}{J} \sum_{j}[\frac{1}{M} \sum_{m}-\log p(\mathbf{x}_{j_{N+m}} \left\lvert\, \underbrace{\boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n}-\log p\left(\mathbf{x}_{j_{n}} \mid \boldsymbol{\theta}\right)}_{\boldsymbol{\phi}_{j}}\right.)]
$$

where

- $x_{j_{1}}, \ldots, x_{j_{N}} \sim p_{\mathcal{T}_{j}}(x)$: a small sample of data from task j
- $x_{j_{N+1}}, \ldots, x_{j_{N+M}} \sim p_{\mathcal{T}_{j}}(x)$: another sample of data from the same task

Graphical Representations

Mathematical formulation:

$$
p(\mathbf{X} \mid \boldsymbol{\theta})=\prod_{j}\left(\int p\left(\mathbf{x}_{j_{1}}, \ldots, \mathbf{x}_{j_{N}} \mid \phi_{j}\right) p\left(\boldsymbol{\phi}_{j} \mid \boldsymbol{\theta}\right) \mathrm{d} \boldsymbol{\phi}_{j}\right)
$$

Approximation

Hierarchical Bayesian model:

$$
p(\mathbf{X} \mid \boldsymbol{\theta})=\prod_{j}\left(\int p\left(\mathbf{x}_{j_{1}}, \ldots, \mathbf{x}_{j_{N}} \mid \phi_{j}\right) p\left(\phi_{j} \mid \boldsymbol{\theta}\right) \mathrm{d} \boldsymbol{\phi}_{j}\right)
$$

MAML as an approximation:

$$
\mathcal{L}(\boldsymbol{\theta})=\frac{1}{J} \sum_{j}[\frac{1}{M} \sum_{m}-\log p(\mathbf{x}_{j_{N+m}} \left\lvert\, \underbrace{\boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n}-\log p\left(\mathbf{x}_{j_{n}} \mid \boldsymbol{\theta}\right)}_{\boldsymbol{\phi}_{j}}\right.)]
$$

Thank You!

