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Generative Modeling
p(y ∣ x; θ) ∝ p(y; θ) ⋅ p(x ∣ y; θ)

 represents all the parameters in this model

: likelihood

: prior

θ

p(x ∣ y; θ)

p(y; θ)
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Concept Learning
Pick a concept

Give some examples of this concept

Ask someone whether a new example belongs to this concept
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Concept Learning in Generative Modeling
Given

: concept

: observations

Learning

p(y ∣ D; θ) ∝ p(y; θ) ⋅ p(D ∣ y; θ)

y

D = {x  }i
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Number Game
Assume all observed numbers are randomly drawn from 
with equal chance

Hypothesis space : a set of hypotheses

Version space : the subset of  that is consistent with . For example,
if 

 = "powers of two"

 = "even numbers"

{1, … , 100}

H

V H D

D = {2}
h  two

h  even
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Likelihood
The likelihood function of each hypothesis is

p(D ∣ h) = (  )
∣h∣
1 N

: the size of numbers can be explained by this hypothesis
For example, 

: the size of observation 

∣h∣
∣h  ∣ =two 6

N D
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Example
Given ,

With hypothesis 

p(D ∣ h  ) =two (  )
6
1 4

With hypothesis 

p(D ∣ h  ) =even (  )
50
1 4

D = {16, 8, 2, 64}

h  two

h  even
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Occam's Razor
[Mackay, 2006]: "Accept the simplest explanation that fits the data"

For example, how many boxes in the following image?
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Model Selection

William of Ockham: "Entities are not to be multiplied without necessity"
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Implication of Occam's Razor
There are many implications of Occam's Razor in machine learning research.
For example,

You should always select the simpliest models that can solve the problem

However, it also means you should understand your research problem (or
your data)
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Example (Cont.)
Given , now let's compare two similar hypotheses

 = "power of two"

p(D ∣ h  ) =two (  )
6
1 6

 = "power of two except 4 and 32"

p(D ∣ h  ) =another (  )
4
1 4

The limitation of will be addressed by the Bayesian version of Occam's
razor

D = {16, 8, 2, 64}

h  two

h  another
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About Maximizing the Likelihood
If the goal is solely about maximizing the likelihood function, then we may pick
the hypothesis that explains the current data too well.

This is overfitting

The simple explanation applies to any other learning scenarios
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Prior
Follow the previous discussion, and consider the two hypotheses:

: "powers of two"

: "powers of two except 4 and 32"

With the previous discussion on likelihood functions,  is more likely

However, in practice, hypotheses like  is more complicated to implement

Or "conceptually unnatural", as discussed in the textbook

h

h′

h′

h′
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Subjectivity
In Bayesian modeling

Prior is the mechanism by which background knowledge can be brought to
bear on a problem

It is also the key of "rapid learning" (e.g., learning with small sample
sizes)

The choice of prior sometimes is subjective
The subjectivity is a controversial issue in Bayesian modeling
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Posterior
The posterior distribution of a hypothesis given  is

p(h ∣ D) =  

p(D)
p(D ∣ h)p(h)

where

 is the major challenge in Bayesian
inference

If we need a single hypothesis from the posterior distribution, we can use
the MAP estimate

 =ĥMAP argmax  p(h ∣h D) = argmax  p(D ∣h h)p(h)

D

p(D) =  p(D ∣∑h′ h )p(h )′ ′
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Example
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Example (Cont.)
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Posterior Predictive Distribution
Provide a way to prodict the next number

p( ∈x~ C ∣ D) =  p(y =
h

∑ 1 ∣ ,h)p(h ∣x~ D)

Instead of considering one single hypothesis  for the prediction, it averages
the possibility of all hypotheses.

h
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Example of Number Prediction
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The Beta-Binomial model

20



Binomial Distribution
Let , where  and ,
then the probability of  is

p(k ∣ n, θ) =  θ (1 −(
k

n
) k θ)n−k

Example: tossing a coin  times, the probability of getting the head 
times

X  ∼i Bernoulli(θ) p(X  =i 1) = θ p(X  =i 0) = 1 − θ

 X  =∑i=1
n

i k

n k
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Prior
A popular prior distribution for  is the Beta distribution

p(θ; γ  , γ  ) ∝1 2 θ (1 −γ  −11 θ)γ  −12

where  and  are the parameters for the prior.

Regarding , these two are called hyper-parameters

θ

γ  1 γ2

θ
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A Formal Definition
p(θ; γ  , γ  ) =1 2 B(γ  , γ  )θ (1 −1 2

γ  −11 θ)γ  −12

where  is the Beta function, which is also the normalization
consistent.

Mean

E(θ) =  θp(θ; γ  , γ  ) =∫
θ

1 2  

γ  + γ  1 2

γ  1

Mode

=θ̂  p(θ; γ  , γ  ) =
θ

arg max 1 2  

γ  + γ  − 21 2

γ  − 11

B(γ  , γ  )1 2

23



Beta Distribution
With different  and  (  and  in the following plot)γ  1 γ  2 α β
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Posterior
The posterior distribution of 

p(θ ∣ n, k; γ  , γ  ) =1 2  

p(k ∣ n; γ  , γ  )1 2

p(θ; γ  , γ  )p(k ∣ n, θ)1 2

where

p(k ∣ n; γ  , γ  ) =1 2  p(k, θ ∣∫
θ

n; γ  , γ  )dθ1 2

θ

25



Posterior (II)
Without the denominator, we have

p(θ ∣ n, k; γ  , γ  ) ∝1 2 θ (1 −k θ) ⋅n−k θ (1 −γ  −11 θ)γ  −12

or

p(θ ∣ n, k; γ  , γ  ) ∝1 2 θ (1 −k+γ  −11 θ)n−k+γ  −12

Beta distribution is the conjugate prior, because the posterior has the
same form as the prior
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The Dirichlet-Multinomial Model
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Distributions
Multinomial distribution

p(x; θ) =  θ  ⋯ θ  

x  ! ⋯ x  !1 K

n!
1
x  1

k
x  K

where  and  are both -dimensional vectors, and 

Dirichlet distribution

p(θ;α) =   θ  

B(α)
1

k=1

∏
K

k
α  −1k

where  is a -dimensional vector too, with 

x θ K  θ  =∑k=1
K

k 1

α K α  >k 0
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Dirichlet Distribution
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Dirichlet Distribution (II)
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Naive Bayes Classifiers
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Problem Setup
Consider a classification problem, with  as input and  as
output

Focus on the posterior distribution of , instead of the model parameter 

p(y ∣ x; θ)

We can also give  a prior, which is called Bayesian naive Bayes classifier
(section 3.5.1.2)

x ∈ RN y ∈ {0, 1}

y θ

θ

32



Likelihood
Given , where  is a -dimensional vector.

Navie Bayes assume that different dimensions in input are independent from
each other

p(x  ∣i y  ; θ  ) =i x∣y  p(x  ∣
j=1

∏
K

i,j y  ; θ  )i x∣y,j

This is a naive assumption

Choose  based on your inputs. For example,
Continuous variables: Gaussian

Discrete variables: Binomial or Multinomial

{(x  , y  )}  i i i=1
N x  ∈i RK K

p(x  ∣i,j y  , θ  )i x∣y,j
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Likelihood (II)
The overall likelihood given the training set  is defined as

lik(θ  ) =x∣y   p(x  ∣
i=1

∏
N

j=1

∏
K

i,j y  ; θ  )i x∣y,j

{(x  , y  )}  i i i=1
N
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Prior
p(y; θ  )y

Choices of the distribution:

Uniform distribution

Bernoulli distribution with the parameter estimated from data
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MAP Estimate

log p(y; θ  ) +y   log p(x  ∣
i=1

∑
N

j=1

∑
K

i,j y  ; θ  )i x∣y,j

Re-arrange it:

log p(y; θ  ) +y  {  log p(x  ∣
j=1

∑
K

i=1

∑
N

i,j y  ; θ  )}i x∣y,j

We need to solve  one-dimensional problemsK + 1
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Thank You!
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