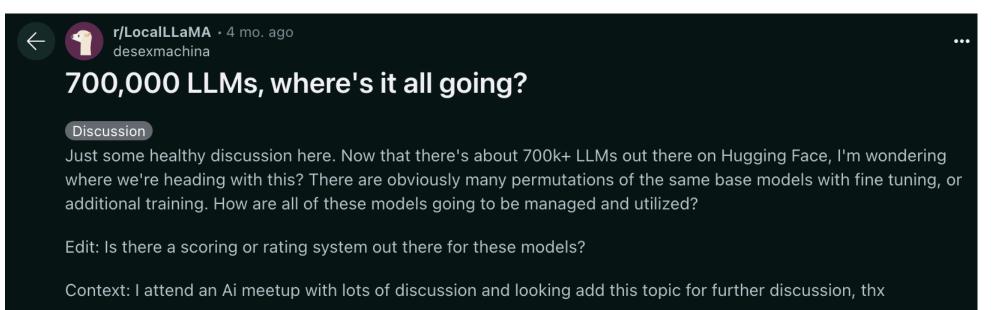
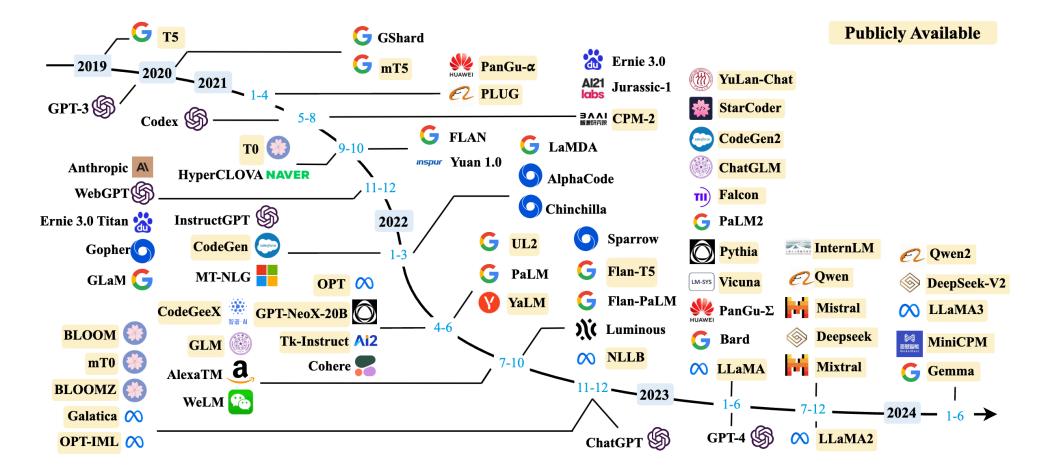
CS 6501 Natural Language Processing


LLM Overview

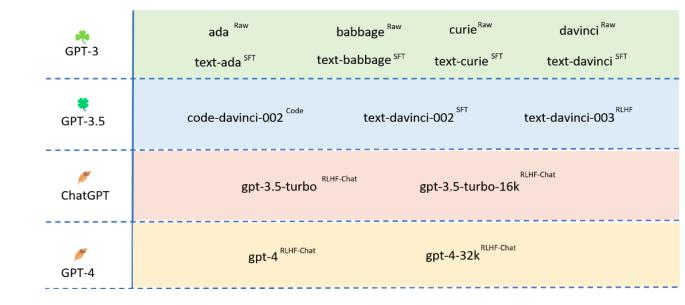
Yangfeng Ji


Information and Language Processing Lab Department of Computer Science University of Virginia https://uvanlp.org/

How Many LLMs?

- More than 1M models
 - $\circ~$ Based on the Hugging Face website
 - $\circ~$ Most of the models are fine-tuned with existing LLMs
- A few months ago

A Timeline


Zhao et al., 2024

Categorizing LLMs (I): Model Family

There are different dimensions of categorizing LLMs.

For example, by model family, GPT family (from OpenAI)

Kalyan 2023

Model Family: Claude

Claude family (from Anthropic)

Claude 3.5 Sonnet

Enhanced reasoning, state-of-the-art coding skills, computer use, and 200K context window

Get API access

Announcements

NEW Claude 3.5 Haiku and a new Claude 3.5 Sonnet Oct 22, 2024 Our updated version of Claude 3.5 Sonnet is now state-of-the-art for real-world software engineering tasks, agentic capabilities, and computer use in public beta.

<u>Read more</u>

NEW Developing a computer use model Oct 22, 2024

A discussion of how our researchers developed Claude's new computer use skills, as well as some of the relevant safety considerations. GPT o1 and Claude 3.5 Sonnet are both large language models, but they have some key differences:

GPT o1:

- Developed by OpenAI
- Known for its ability to generate code and perform complex reasoning tasks
- Can be more verbose and less concise in its responses
- May require more specific prompts to get the desired output
- · More expensive to use

Claude 3.5 Sonnet:

- Developed by Anthropic
- Strong in coding tasks and reasoning abilities
- More cost-effective (4x cheaper than GPT o1)
- Can be more thoughtful and faster than GPT o1
- May be more stubborn and require adjustments to the system prompt or more concrete examples to change its output

Model Family: Gemini

Belong to the same model family

- Bard
- PaLM
- LaMDA

Open-source Model Family

- Llama (from Meta AI)
- Pythia (from Eleuther AI)
- Falcon (from Technology Innovation Institute, Abu Dhabi)
- Mistral (from Mistral AI)
- OLMo (from AI2)

Categorizing LLMs (II): Model Size

By model size

- < 1B parameters (e.g., OPT-350M, Pythia-160M)
 - Research toys, domain-specific, embedding
- Between 1B and 10B parameters (e.g., Llama3 8B)
 - $\circ~$ Storytelling, writing, code generation, speech
- Between 10B and 100B parameters (e.g., Llama3 80B)
 Reasoning, planning, world knowledge
- More than 100B parameters (e.g., Llama-3.1 405B)
 - Comparable performance to GPT 4 (on some benchmarks)

Categorizing LLMs (III): Accessibility

How can we access an LLM model?

• Closed-source models (via APIs), e.g.,

• GPT-3, 4 (OpenAI)

- Claude 3.5 (Anthropic)
- Open-source models, e.g.,
 - \circ the Llama family
 - GPT-1, GPT-2
 - $\circ\,$ the OLMo family
 - \circ the Mistral family

Categorizing LLMs (IV): Data Types

What types of data they can process?

- Text only
 - Most of the open-source LLMs
- Code
 - Code Llama
- Multi-modal
 - LLama 3.2 11B and 90B (Open-sourced)
 - GPT-4 (Closed-source)

How to Choose a Model?

- Research vs. Applications
- Performance vs. Efficiency
- Cost vs. Infrastructure
- Privacy (and many other concerns)

Research vs. Applications

- Research: for research, highly recommend open-source models
- Application: closed-source models are easier to use

Performance vs. Efficiency

- Performance
 - Open-source models are getting better and better
- It's better to find a trade-off between performance and efficiency
 For example, working on embedded systems

Cost vs. Infrastructure

- Hosting a GPU server requires non-trivial cost
- In many cases, money spent on closed-source model APIs is also considerably large

Privacy and Other Concerns

- Not be able to share data to the public domain
- Identifying model biases is more like observational study, but mitigating model bias requires deeper understanding of model behaviors

Thank You!