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Word Embeddings



Word Embeddings

e |n NLP, word embeddings are numeric representations/vectors of words {'wz}
e Simple algebraic operations can be used to measure word similarity

e For example
T

o w, w;:the semantic similarity between word 2 and 7



Skip-gram Models

e The skip-gram model provides a way of learning word embeddings

e For agiven sentence withwords - - -, wW¢_o, W¢_1, Wi, W1, Wii2, - - -, the
skip-gram model builds word embeddings by using every word in the
sentence to predict its surrounding words:
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Examples

After learning, we can use word embeddings to identify some similar words, or

calculate their semantic relations

e Nearest words in the embedding space
e Similarity between two words

e Word analogy
Link


http://epsilon-it.utu.fi/wv_demo/

Pre-training

e The idea of pre-training in this context is to build word embeddings without
having a pre-defined NLP application (e.g., text classification, text generation)

e These pre-trained embeddings can be used generically in many scenarios
Some example pre-trained word embeddings

e Google Word2vec
e Stanford GloVe


https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/

Bias in Word Embeddings

Pre-trained word embeddings may contain unexpected bias
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Bolukbasi et al., 2016


https://arxiv.org/abs/1607.06520

From Word Embeddings to Sentence
Representations



Simple Methods

For a given sentence with /N words, some simple methods of calculating sentence
representations with pre-trained word embeddings

e Average of word embeddings

e Convolutional neural network
s = CNN(w1,...,wy)



Using RNNs

Using a bi-directional RNN

e Building a RNN from left to right, we can use h; to replace w; as
contextualized word embeddings

e —
hi — RNN(wl, .« o ,wi)

e \We can also build another RNN from right to left, as

—
h; = RNN(w;,...,wy)
e The final word embedding of word 7 is the concatenation of these two vectors

¢
h; = |hi, h]
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ELMo

Embeddings from language models (ELMo)

With L-layer LSTM language model, each word w; will have a list of

representations
{hi}50=1,...,L}
where
g h,f:é” — w;: the word embedding

o hflM: the hidden state from the [-th layer of LSTM
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ELMo (ll)

A task-specific word representation from ELMo embeddings is
L
LM
ei(v,81) =7 Y si-hij
=0

where vy € Rand {s; € R}ZL:O are task-specific parameters
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Pre-trained Language Models
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Transformer

Vaswani et al., 2017/
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https://arxiv.org/pdf/1706.03762.pdf

BERT

Bidirectional Encoder Representations from Transfromers
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https://arxiv.org/pdf/1810.04805.pdf

GPT

Generative Pre-trained Transformers
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https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT 4

In the OpenAl's report on GPT-4:

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [39] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40]. Given both
the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.
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Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Reinforcement Learning with Human Feedback

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

|
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Some people went
to the moon...

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This datais used
to train our
reward model.

Explain the moon
landing to a 6 year old
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reward for N7
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Thereward is
used to update rk
the policy
using PPO.

18



Data

We don't know what data was used to training the later GPT models, but we can
get some idea from the data used to further improve these models (e.g., GPT-3)
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Thank You!
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