
CS 4774 Machine Learning
Gradient-based Optimization

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. Gradient Descent

2. Stochastic Gradient Descent

3. SGD with Momentum

4. Adaptive Learning Rates

1

Gradient Descent

Learning as Optimization

As discussed before, learning can be viewed as optimization problem.

▶ Training set 𝑆 = {(𝒙1 , 𝑦1), . . . , (𝒙𝑚 , 𝑦𝑚)}
▶ Empirical risk

𝐿(ℎ𝜽 , 𝑆) =
1
𝑚

𝑚∑
𝑖=1

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (1)

where 𝑅 is the risk function
▶ Learning: minimize the empirical risk

𝜽← argmin
𝜽′

𝐿𝑆(ℎ𝜽′ , 𝑆) (2)

3

Learning as Optimization (II)

Some examples of risk functions

▶ Logistic regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = − log 𝑝(𝑦𝑖 | 𝒙𝑖 ;𝜽) (3)

▶ Linear regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = ∥ℎ𝜽(𝒙𝑖) − 𝑦𝑖 ∥22 (4)

▶ Neural network

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = Cross-entropy(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (5)

▶ Percetpron and AdaBoost can also be viewed as minimizing
certain loss functions

4

Learning as Optimization (II)

Some examples of risk functions

▶ Logistic regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = − log 𝑝(𝑦𝑖 | 𝒙𝑖 ;𝜽) (3)

▶ Linear regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = ∥ℎ𝜽(𝒙𝑖) − 𝑦𝑖 ∥22 (4)

▶ Neural network

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = Cross-entropy(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (5)

▶ Percetpron and AdaBoost can also be viewed as minimizing
certain loss functions

4

Learning as Optimization (II)

Some examples of risk functions

▶ Logistic regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = − log 𝑝(𝑦𝑖 | 𝒙𝑖 ;𝜽) (3)

▶ Linear regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = ∥ℎ𝜽(𝒙𝑖) − 𝑦𝑖 ∥22 (4)

▶ Neural network

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = Cross-entropy(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (5)

▶ Percetpron and AdaBoost can also be viewed as minimizing
certain loss functions

4

Learning as Optimization (II)

Some examples of risk functions

▶ Logistic regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = − log 𝑝(𝑦𝑖 | 𝒙𝑖 ;𝜽) (3)

▶ Linear regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = ∥ℎ𝜽(𝒙𝑖) − 𝑦𝑖 ∥22 (4)

▶ Neural network

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = Cross-entropy(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (5)

▶ Percetpron and AdaBoost can also be viewed as minimizing
certain loss functions

4

Constrained Optimization

The dual optimization problem for SVMs of the separable cases is

max
𝜶

𝑚∑
𝑖=1

𝛼𝑖 −
1
2

𝑚∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩ (6)

s.t. 𝛼𝑖 ≥ 0 (7)
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0 ∀𝑖 ∈ [𝑚] (8)

▶ Lagrange multiplier 𝜶 is also called dual variable
▶ This is an optimization problem only about 𝜶
▶ The dual problem is defined on the inner product ⟨𝒙𝑖 , 𝒙 𝑗⟩

5

Constrained Optimization

The dual optimization problem for SVMs of the separable cases is

max
𝜶

𝑚∑
𝑖=1

𝛼𝑖 −
1
2

𝑚∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩ (6)

s.t. 𝛼𝑖 ≥ 0 (7)
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0 ∀𝑖 ∈ [𝑚] (8)

▶ Lagrange multiplier 𝜶 is also called dual variable
▶ This is an optimization problem only about 𝜶
▶ The dual problem is defined on the inner product ⟨𝒙𝑖 , 𝒙 𝑗⟩

5

Optimization via Gradient Descent

The basic form of an optimization problem

min 𝑓 (𝜽)
s.t.𝜽 ∈ 𝐵

(9)

where 𝑓 (𝜽) : ℝ𝑑 → ℝ is the objective function and 𝐵 ⊆ ℝ𝑑 is the
constraint on 𝜽, which usually can be formulated as a set of
inequalities (e.g., SVM)

In this lecture

▶ we only focus on unconstrained optimization problem, in other
words, 𝜽 ∈ ℝ𝑑

▶ assume 𝑓 is convex and differentiable

6

Optimization via Gradient Descent

The basic form of an optimization problem

min 𝑓 (𝜽)
s.t.𝜽 ∈ 𝐵

(9)

where 𝑓 (𝜽) : ℝ𝑑 → ℝ is the objective function and 𝐵 ⊆ ℝ𝑑 is the
constraint on 𝜽, which usually can be formulated as a set of
inequalities (e.g., SVM)

In this lecture

▶ we only focus on unconstrained optimization problem, in other
words, 𝜽 ∈ ℝ𝑑

▶ assume 𝑓 is convex and differentiable

6

Review: Gradient of a 1-D Function

Consider the gradient of this 1-dimensional function

𝑦 = 𝑓 (𝑥) = 𝑥2 − 𝑥 − 2 (10)

7

Review: Gradient of a 2-D Function

Now, consider a 2-dimensional function with 𝒙 = (𝑥1 , 𝑥2)

𝑦 = 𝑓 (𝒙) = 𝑥2
1 + 2𝑥2

2 (11)

Here is the contour plot of this function

We are going to use this as our running example

8

Gradient Descent

To learn the parameter 𝜽, the learning algorithm needs to update it
iteratively using the following three steps

1. Choose an initial point 𝜽(0) ∈ ℝ𝑑

2. Repeat
𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 · ∇ 𝑓 (𝜽)|𝜽=𝜽(𝑡) (12)

where �𝑡 is the learning rate at time 𝑡

3. Go back step 1 until it converges

∇ 𝑓 (𝜽) is defined as

∇ 𝑓 (𝜽) =
(𝜕 𝑓 (𝜽)
𝜕�1

, · · · , 𝜕 𝑓 (𝜽)
𝜕�𝑑

)
(13)

9

Gradient Descent

To learn the parameter 𝜽, the learning algorithm needs to update it
iteratively using the following three steps

1. Choose an initial point 𝜽(0) ∈ ℝ𝑑

2. Repeat
𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 · ∇ 𝑓 (𝜽)|𝜽=𝜽(𝑡) (12)

where �𝑡 is the learning rate at time 𝑡

3. Go back step 1 until it converges

∇ 𝑓 (𝜽) is defined as

∇ 𝑓 (𝜽) =
(𝜕 𝑓 (𝜽)
𝜕�1

, · · · , 𝜕 𝑓 (𝜽)
𝜕�𝑑

)
(13)

9

Gradient Descent Interpretation

An intuitive justification of the gradient descent algorithm is to
consider the following plot

The direction of the gradient is the direction that the function has the
“fastest increase”.

10

Gradient Descent Interpretation (II)

Theoretical justification

▶ First-order Taylor approximation

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

(14)

▶ In gradient descent, Δ𝜽 = −�∇ 𝑓
��
𝜽

▶ Therefore, we have

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − ⟨�∇ 𝑓 ,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − �∥∇ 𝑓 ∥22
��
𝜽
≤ 𝑓 (𝜽) (15)

11

Gradient Descent Interpretation (II)

Theoretical justification

▶ First-order Taylor approximation

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

(14)

▶ In gradient descent, Δ𝜽 = −�∇ 𝑓
��
𝜽

▶ Therefore, we have

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − ⟨�∇ 𝑓 ,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − �∥∇ 𝑓 ∥22
��
𝜽
≤ 𝑓 (𝜽) (15)

11

Gradient Descent Interpretation (II)

Theoretical justification

▶ First-order Taylor approximation

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

(14)

▶ In gradient descent, Δ𝜽 = −�∇ 𝑓
��
𝜽

▶ Therefore, we have

𝑓 (𝜽 + Δ𝜽) ≈ 𝑓 (𝜽) + ⟨Δ𝜽,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − ⟨�∇ 𝑓 ,∇ 𝑓 ⟩
��
𝜽

= 𝑓 (𝜽) − �∥∇ 𝑓 ∥22
��
𝜽
≤ 𝑓 (𝜽) (15)

11

Gradient Descent Interpretation (III)

Consider the second-order Taylor approximation of 𝑓

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2 (𝜽

′ − 𝜽)T∇2 𝑓 (𝜽)(𝜽′ − 𝜽)

▶ The quadratic approximation of 𝑓 with the following

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2� (𝜽

′ − 𝜽)T(𝜽′ − 𝜽)

▶ Minimize 𝑓 (𝜽′)wrt 𝜽′

𝜕 𝑓 (𝜽′)
𝜕𝜽′

≈ ∇ 𝑓 (𝜽) + 1
2� (𝜽

′ − 𝜽) = 0

⇒ 𝜽′ = 𝜽 − � · ∇ 𝑓 (𝜽) (16)

▶ Gradient descent chooses the next point 𝜽′ to minimize the
function

12

Gradient Descent Interpretation (III)

Consider the second-order Taylor approximation of 𝑓

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2 (𝜽

′ − 𝜽)T∇2 𝑓 (𝜽)(𝜽′ − 𝜽)

▶ The quadratic approximation of 𝑓 with the following

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2� (𝜽

′ − 𝜽)T(𝜽′ − 𝜽)

▶ Minimize 𝑓 (𝜽′)wrt 𝜽′

𝜕 𝑓 (𝜽′)
𝜕𝜽′

≈ ∇ 𝑓 (𝜽) + 1
2� (𝜽

′ − 𝜽) = 0

⇒ 𝜽′ = 𝜽 − � · ∇ 𝑓 (𝜽) (16)

▶ Gradient descent chooses the next point 𝜽′ to minimize the
function

12

Gradient Descent Interpretation (III)

Consider the second-order Taylor approximation of 𝑓

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2 (𝜽

′ − 𝜽)T∇2 𝑓 (𝜽)(𝜽′ − 𝜽)

▶ The quadratic approximation of 𝑓 with the following

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2� (𝜽

′ − 𝜽)T(𝜽′ − 𝜽)

▶ Minimize 𝑓 (𝜽′)wrt 𝜽′

𝜕 𝑓 (𝜽′)
𝜕𝜽′

≈ ∇ 𝑓 (𝜽) + 1
2� (𝜽

′ − 𝜽) = 0

⇒ 𝜽′ = 𝜽 − � · ∇ 𝑓 (𝜽) (16)

▶ Gradient descent chooses the next point 𝜽′ to minimize the
function

12

Gradient Descent Interpretation (III)

Consider the second-order Taylor approximation of 𝑓

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2 (𝜽

′ − 𝜽)T∇2 𝑓 (𝜽)(𝜽′ − 𝜽)

▶ The quadratic approximation of 𝑓 with the following

𝑓 (𝜽′) ≈ 𝑓 (𝜽) + ∇ 𝑓 (𝜽)(𝜽′ − 𝜽) + 1
2� (𝜽

′ − 𝜽)T(𝜽′ − 𝜽)

▶ Minimize 𝑓 (𝜽′)wrt 𝜽′

𝜕 𝑓 (𝜽′)
𝜕𝜽′

≈ ∇ 𝑓 (𝜽) + 1
2� (𝜽

′ − 𝜽) = 0

⇒ 𝜽′ = 𝜽 − � · ∇ 𝑓 (𝜽) (16)

▶ Gradient descent chooses the next point 𝜽′ to minimize the
function

12

Step size

𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 ·
𝜕 𝑓 (𝜽)
𝜕𝜽

���
𝜽=𝜽(𝑡)

(17)

If choose fixed step size �𝑡 = �0, consider the following function

𝑓 (𝜽) = (10�2
1 + �2

2)/2

(a) Too small

(b) Too large (c) Just right

13

Step size

𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 ·
𝜕 𝑓 (𝜽)
𝜕𝜽

���
𝜽=𝜽(𝑡)

(17)

If choose fixed step size �𝑡 = �0, consider the following function

𝑓 (𝜽) = (10�2
1 + �2

2)/2

(d) Too small (e) Too large

(f) Just right

13

Step size

𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 ·
𝜕 𝑓 (𝜽)
𝜕𝜽

���
𝜽=𝜽(𝑡)

(17)

If choose fixed step size �𝑡 = �0, consider the following function

𝑓 (𝜽) = (10�2
1 + �2

2)/2

(g) Too small (h) Too large (i) Just right

13

Optimal Step Sizes

▶ Exact Line Search Solve this one-dimensional subproblem

𝑡 ← argmin
𝑠≥0

𝑓 (𝜽 − 𝑠∇ 𝑓 (𝜽)) (18)

▶ Backtracking Line Search: with parameters 0 < 𝛽 < 1,
0 < 𝛼 ≤ 1/2, and large initial value �𝑡 , if

𝑓 (𝜽 − �∇ 𝑓 (𝜽)) > 𝑓 (𝜽) − 𝛼�𝑡 ∥∇ 𝑓 (𝜽)∥22 (19)

shrink �𝑡 ← 𝛽�𝑡

▶ Usually, this is not worth the effort, since the computational
complexity may be too high (e.g., 𝑓 is a neural network)

14

Optimal Step Sizes

▶ Exact Line Search Solve this one-dimensional subproblem

𝑡 ← argmin
𝑠≥0

𝑓 (𝜽 − 𝑠∇ 𝑓 (𝜽)) (18)

▶ Backtracking Line Search: with parameters 0 < 𝛽 < 1,
0 < 𝛼 ≤ 1/2, and large initial value �𝑡 , if

𝑓 (𝜽 − �∇ 𝑓 (𝜽)) > 𝑓 (𝜽) − 𝛼�𝑡 ∥∇ 𝑓 (𝜽)∥22 (19)

shrink �𝑡 ← 𝛽�𝑡

▶ Usually, this is not worth the effort, since the computational
complexity may be too high (e.g., 𝑓 is a neural network)

14

Optimal Step Sizes

▶ Exact Line Search Solve this one-dimensional subproblem

𝑡 ← argmin
𝑠≥0

𝑓 (𝜽 − 𝑠∇ 𝑓 (𝜽)) (18)

▶ Backtracking Line Search: with parameters 0 < 𝛽 < 1,
0 < 𝛼 ≤ 1/2, and large initial value �𝑡 , if

𝑓 (𝜽 − �∇ 𝑓 (𝜽)) > 𝑓 (𝜽) − 𝛼�𝑡 ∥∇ 𝑓 (𝜽)∥22 (19)

shrink �𝑡 ← 𝛽�𝑡

▶ Usually, this is not worth the effort, since the computational
complexity may be too high (e.g., 𝑓 is a neural network)

14

Convergence Analysis

▶ 𝑓 is convex and differentiable, additionally

∥∇ 𝑓 (𝜽) − ∇ 𝑓 (𝜽′)∥2 ≤ 𝐿 · ∥𝜽 − 𝜽′∥2 (20)

for any 𝜽, 𝜽′ ∈ ℝ𝑑 and 𝐿 is a fixed positive value

▶ Theorem: Gradient descent with fixed step size �0 ≤ 1/𝐿 satisfies

𝑓 (𝜽(𝑡)) − 𝑓 ∗ ≤
∥𝜽(0) − 𝜽∗∥22

2�0𝑡
(21)

where 𝑓 ∗ is the optimal value and 𝜽∗ is the optimal parameter
▶ Same result holds for backtracking with �0 replaced by 𝛽/𝐿

15

Convergence Analysis

▶ 𝑓 is convex and differentiable, additionally

∥∇ 𝑓 (𝜽) − ∇ 𝑓 (𝜽′)∥2 ≤ 𝐿 · ∥𝜽 − 𝜽′∥2 (20)

for any 𝜽, 𝜽′ ∈ ℝ𝑑 and 𝐿 is a fixed positive value
▶ Theorem: Gradient descent with fixed step size �0 ≤ 1/𝐿 satisfies

𝑓 (𝜽(𝑡)) − 𝑓 ∗ ≤
∥𝜽(0) − 𝜽∗∥22

2�0𝑡
(21)

where 𝑓 ∗ is the optimal value and 𝜽∗ is the optimal parameter

▶ Same result holds for backtracking with �0 replaced by 𝛽/𝐿

15

Convergence Analysis

▶ 𝑓 is convex and differentiable, additionally

∥∇ 𝑓 (𝜽) − ∇ 𝑓 (𝜽′)∥2 ≤ 𝐿 · ∥𝜽 − 𝜽′∥2 (20)

for any 𝜽, 𝜽′ ∈ ℝ𝑑 and 𝐿 is a fixed positive value
▶ Theorem: Gradient descent with fixed step size �0 ≤ 1/𝐿 satisfies

𝑓 (𝜽(𝑡)) − 𝑓 ∗ ≤
∥𝜽(0) − 𝜽∗∥22

2�0𝑡
(21)

where 𝑓 ∗ is the optimal value and 𝜽∗ is the optimal parameter
▶ Same result holds for backtracking with �0 replaced by 𝛽/𝐿

15

Stochastic Gradient Descent

Gradient Descent

Given a training set {(𝒙𝑖 , 𝑦𝑖)}𝑚𝑖=1, the loss function is defined as

𝐿(ℎ𝜽 , 𝑆) =
1
𝑚

𝑚∑
𝑖=1

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (22)

where 𝑅 is the risk function

Examples:

▶ Logistic regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = − log 𝑝(𝑦𝑖 | 𝒙𝑖 ;𝜽) (23)

▶ Linear regression

𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) = ∥ℎ𝜽(𝒙𝑖) − 𝑦𝑖 ∥22 (24)

17

Gradient Descent (II)

▶ Consider the gradient of loss function ∇𝐿(ℎ𝜽 , 𝑆)

∇𝐿(ℎ𝜽 , 𝑆) =
1
𝑚

𝑚∑
𝑖=1
∇𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (25)

▶ To simplify the notation, let 𝑓𝑖(𝜽) = 𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) and
𝑓 (𝜽) = 𝐿(ℎ𝜽 , 𝑆), then

∇ 𝑓 (𝜽) = 1
𝑚

𝑚∑
𝑖=1
∇ 𝑓𝑖(𝜽) (26)

18

Gradient Descent (II)

▶ Consider the gradient of loss function ∇𝐿(ℎ𝜽 , 𝑆)

∇𝐿(ℎ𝜽 , 𝑆) =
1
𝑚

𝑚∑
𝑖=1
∇𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) (25)

▶ To simplify the notation, let 𝑓𝑖(𝜽) = 𝑅(ℎ𝜽(𝒙𝑖), 𝑦𝑖) and
𝑓 (𝜽) = 𝐿(ℎ𝜽 , 𝑆), then

∇ 𝑓 (𝜽) = 1
𝑚

𝑚∑
𝑖=1
∇ 𝑓𝑖(𝜽) (26)

18

Stochastic Gradient Descent

To learn the parameter 𝜽, we can compute the gradient with one
training example (𝒙𝑖 , 𝑦𝑖) each time step and update the parameter as

𝜽(𝑡+1) ← 𝜽(𝑡) − �𝑡 · ∇ 𝑓𝑖(𝜽)|𝜽(𝑡) (27)

where

▶ 𝑡: time step
▶ ∇ 𝑓𝑖(𝜽(𝑡)) is the gradient of the single-example loss 𝐿
▶ �𝑡 is the learning rate (step size)

19

Stochastic?

Compare gradient descent and stochastic gradient descent

As each step SGD only uses the gradient from one training example,
it can be viewed as a gradient descent method with some randomness

20

Motivation

There are at least two motivations of using SGD

▶ SGD can be a big savings in terms of memory usage
▶ learning with large-scale data
▶ models with lots of parameters

▶ The iteration cost of SGD is independent of sample size 𝑚

21

Motivation (II)

An empirical comparison between SGD and a batch optimization
method (L-BFGS) on a binary classification problem with logistic
regression [Bottou et al., 2018]

22

How to Choose an Example

▶ Cyclic Rule: choose 𝑖 ∈ (1, 2, . . . , 𝑚) in order

▶ Randomized Rule: Every iteration, choose 𝑖 ∈ [𝑚] uniformly at
random
▶ In practice, randomized rule is more common, since we have

𝐸 [∇ 𝑓𝑖(𝜽)] ≈
1
𝑚

𝑚∑
𝑖=1
∇ 𝑓𝑖(𝜽) = ∇ 𝑓 (𝜽) (28)

as an unbiased estimate of ∇ 𝑓 (𝜽)
▶ Alternatively, shuffle the training example at the end of each

training epoch

23

How to Choose an Example

▶ Cyclic Rule: choose 𝑖 ∈ (1, 2, . . . , 𝑚) in order
▶ Randomized Rule: Every iteration, choose 𝑖 ∈ [𝑚] uniformly at

random
▶ In practice, randomized rule is more common, since we have

𝐸 [∇ 𝑓𝑖(𝜽)] ≈
1
𝑚

𝑚∑
𝑖=1
∇ 𝑓𝑖(𝜽) = ∇ 𝑓 (𝜽) (28)

as an unbiased estimate of ∇ 𝑓 (𝜽)
▶ Alternatively, shuffle the training example at the end of each

training epoch

23

Convergence of SGD

The convergence of SGD usually requires diminishing step sizes

▶ The usual conditions on the learning rates are

∞∑
𝑡=1

�𝑡 = ∞
∞∑
𝑡=1

�2
𝑡 ≤ ∞ (29)

▶ A simplest function that satisfies these conditions is

�𝑡 =
1
𝑡

(30)

[Bottou et al., 1998]

24

Convergence of SGD

The convergence of SGD usually requires diminishing step sizes

▶ The usual conditions on the learning rates are

∞∑
𝑡=1

�𝑡 = ∞
∞∑
𝑡=1

�2
𝑡 ≤ ∞ (29)

▶ A simplest function that satisfies these conditions is

�𝑡 =
1
𝑡

(30)

[Bottou et al., 1998]

24

SGD with Momentum

Review: Vector Addition

The parallelogram law of vector addition

𝒄 = 𝒂 + 𝒃 (31)

26

SGD with Momentum

Given the loss function 𝑓 (𝜽) to be minimized, SGD with momentum
is given by

𝒗(𝑡) = �𝒗(𝑡−1) + ∇ 𝑓 (𝜽)|𝜽(𝑡−1) (32)
𝜽(𝑡) = 𝜽(𝑡−1) − �𝑡𝒗(𝑡) (33)

where

▶ �𝑡 is still the learning rate
▶ � ∈ [0, 1] is the momentum coefficient. Usually, � = 0.99 or 0.999.

27

Intuitive Explanation

(Note: the arrow show the opposite direction of the gradient)

(a) SGD without momentum

(b) SGD with momentum

Figure: The effect of momentum in SGD: reduce the fluctuation (Credit:
Genevieve B. Orr)

28

Intuitive Explanation

(Note: the arrow show the opposite direction of the gradient)

(a) SGD without momentum

(b) SGD with momentum

Figure: The effect of momentum in SGD: reduce the fluctuation (Credit:
Genevieve B. Orr)

28

Another Example with Contour Plot

Consider the following problem

𝑦 = 𝑥2
1 + 10𝑥2

2 (34)
𝜕𝑦

𝜕𝑥1
= 2𝑥1

𝜕𝑦

𝜕𝑥2
= 20𝑥2 (35)

Note: the arrow show the opposite direction of the gradient

29

Another Example with Contour Plot (Cont.)

Add the previous gradient reduce the fluctuation of stochastic
gradients

𝒗(𝑡) = �𝒗(𝑡−1) + 𝒈 (𝑡−1) (36)

!"($%&)

(($%&)

"($)

Note: the arrow show the opposite direction of the gradient

30

Adaptive Learning Rates

Basic Idea

The basic idea of using adaptive learning rates is to make sure that

all 𝜽𝑘 ’s converge roughly at the same speed

For neural networks, the motivation of picking a different learning
rate for each 𝜽𝑘 (the 𝑘-th component of parameter 𝜽) is not
new [LeCun et al., 2012] (the article was originally published in 1998).

32

AdaGrad

The basic idea of AdaGrad [Duchi et al., 2011] is to modify the
learning rate � for 𝜽𝑘 by using the history of the gradients

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝐺
(𝑡−1)
𝑘,𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(37)

▶ 𝑔
(𝑡−1)
𝑘

= [∇ 𝑓 (𝜽)|𝜽(𝑡−1)]𝑘 is the 𝑘-th component of ∇ 𝑓 (𝜽)|𝜽(𝑡−1)

▶ 𝐺
(𝑡−1)
𝑘,𝑘

=
∑𝑡−1

𝑖=1(𝑔
(𝑖)
𝑘
)2

▶ �0 is the initial learning rate
▶ 𝜖 is a smoothing parameter usually with order 10−6

33

AdaGrad

The basic idea of AdaGrad [Duchi et al., 2011] is to modify the
learning rate � for 𝜽𝑘 by using the history of the gradients

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝐺
(𝑡−1)
𝑘,𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(37)

▶ 𝑔
(𝑡−1)
𝑘

= [∇ 𝑓 (𝜽)|𝜽(𝑡−1)]𝑘 is the 𝑘-th component of ∇ 𝑓 (𝜽)|𝜽(𝑡−1)

▶ 𝐺
(𝑡−1)
𝑘,𝑘

=
∑𝑡−1

𝑖=1(𝑔
(𝑖)
𝑘
)2

▶ �0 is the initial learning rate
▶ 𝜖 is a smoothing parameter usually with order 10−6

33

AdaGrad

The basic idea of AdaGrad [Duchi et al., 2011] is to modify the
learning rate � for 𝜽𝑘 by using the history of the gradients

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝐺
(𝑡−1)
𝑘,𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(37)

▶ 𝑔
(𝑡−1)
𝑘

= [∇ 𝑓 (𝜽)|𝜽(𝑡−1)]𝑘 is the 𝑘-th component of ∇ 𝑓 (𝜽)|𝜽(𝑡−1)

▶ 𝐺
(𝑡−1)
𝑘,𝑘

=
∑𝑡−1

𝑖=1(𝑔
(𝑖)
𝑘
)2

▶ �0 is the initial learning rate
▶ 𝜖 is a smoothing parameter usually with order 10−6

33

AdaGrad: Intuitive Explanation

Consider the gradient of a 2-dimensional optimization problem with
𝜽 = (�1 , �2)

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝐺
(𝑡−1)
𝑘,𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(38)

The magnitude of gradient along �2 is often larger then �1

AdaGrad helps shrink step sizes along �2 that allows the procedure
converges roughly at the same speed

34

AdaGrad: Intuitive Explanation

Consider the gradient of a 2-dimensional optimization problem with
𝜽 = (�1 , �2)

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝐺
(𝑡−1)
𝑘,𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(38)

The magnitude of gradient along �2 is often larger then �1

AdaGrad helps shrink step sizes along �2 that allows the procedure
converges roughly at the same speed

34

RMSProp

RMSProp (Root Mean Square Propagation) uses a moving average
over the past gradients

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0√

𝒓 (𝑡)
𝑘
+ 𝜖

𝑔
(𝑡−1)
𝑘

(39)

where
𝑟
(𝑡)
𝑘

= 𝜌𝑟(𝑡−1)
𝑘
+ (1 − 𝜌)[𝑔(𝑡−1)

𝑘
]2 (40)

and 𝜌 ∈ (0, 1), 𝑘 is the dimension index, and 𝑡 is the time stemp

[Hinton, 2012]

35

Adam

The Adam algorithm [Kingma and Ba, 2014] is proposed to combine
the idea of SGD with moment and RMSProp

𝑣
(𝑡)
𝑘

= �𝑣(𝑡−1)
𝑘
+ (1 − �)𝑔(𝑡−1)

𝑘
(41)

𝑟
(𝑡)
𝑘

= 𝜌𝑟(𝑡−1)
𝑘
+ (1 − 𝜌)[𝑔(𝑡−1)

𝑘
]2 (42)

�̂�
(𝑡)
𝑘

=
𝑣
(𝑡)
𝑘

1 − �𝑡
(43)

𝑟
(𝑡)
𝑘

=
𝑟
(𝑡)
𝑘

1 − 𝜌𝑡
(44)

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0

�̂�
(𝑡)
𝑘√

𝑟
(𝑡)
𝑘
+ 𝜖

(45)

The default values of � and 𝜌 are 0.9 and 0.999 respectively.

36

Adam

The Adam algorithm [Kingma and Ba, 2014] is proposed to combine
the idea of SGD with moment and RMSProp

𝑣
(𝑡)
𝑘

= �𝑣(𝑡−1)
𝑘
+ (1 − �)𝑔(𝑡−1)

𝑘
(41)

𝑟
(𝑡)
𝑘

= 𝜌𝑟(𝑡−1)
𝑘
+ (1 − 𝜌)[𝑔(𝑡−1)

𝑘
]2 (42)

�̂�
(𝑡)
𝑘

=
𝑣
(𝑡)
𝑘

1 − �𝑡
(43)

𝑟
(𝑡)
𝑘

=
𝑟
(𝑡)
𝑘

1 − 𝜌𝑡
(44)

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0

�̂�
(𝑡)
𝑘√

𝑟
(𝑡)
𝑘
+ 𝜖

(45)

The default values of � and 𝜌 are 0.9 and 0.999 respectively.

36

Adam

The Adam algorithm [Kingma and Ba, 2014] is proposed to combine
the idea of SGD with moment and RMSProp

𝑣
(𝑡)
𝑘

= �𝑣(𝑡−1)
𝑘
+ (1 − �)𝑔(𝑡−1)

𝑘
(41)

𝑟
(𝑡)
𝑘

= 𝜌𝑟(𝑡−1)
𝑘
+ (1 − 𝜌)[𝑔(𝑡−1)

𝑘
]2 (42)

�̂�
(𝑡)
𝑘

=
𝑣
(𝑡)
𝑘

1 − �𝑡

(43)

𝑟
(𝑡)
𝑘

=
𝑟
(𝑡)
𝑘

1 − 𝜌𝑡

(44)

�(𝑡)
𝑘

= �(𝑡−1)
𝑘
− �0

�̂�
(𝑡)
𝑘√

𝑟
(𝑡)
𝑘
+ 𝜖

(45)

The default values of � and 𝜌 are 0.9 and 0.999 respectively.

36

How to Choose a Optimization Algorithm?

[Hinton, 2012, Lecture Notes in 2012]

37

Reference

Bottou, L., Curtis, F. E., and Nocedal, J. (2018).
Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311.

Bottou, L. et al. (1998).
Online learning and stochastic approximations.
On-line learning in neural networks, 17(9):142.

Duchi, J., Hazan, E., and Singer, Y. (2011).
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(Jul):2121–2159.

Hinton, G. (2012).
Neural networks for machine learning.
Lecture notes.

Kingma, D. P. and Ba, J. (2014).
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012).
Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer.

38

	Overview
	Gradient Descent
	Stochastic Gradient Descent
	SGD with Momentum
	Adaptive Learning Rates

