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From Perceptrons to MLPs



Perceptrons

▶ X= ℝ𝑑

▶ Y= {−1,+1}
▶ Halfspace hypothesis class

Hhalf = {sign(⟨𝒘 , 𝒙⟩) : 𝒘 ∈ ℝ𝑑} (1)

which is an infinite hypothesis space.

The sign function 𝑦 = sign(𝑥) is defined as
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The XOR Problem

𝑦 = 𝑥1 ⊕ 𝑥2 (2)
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A Multi-Layer Perceptron

The problem can be solved by stacking three perceptrons together, for
example,

The new model is called Multi-Layer Perceptron (MLP).
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Geometric Interpretation

The previous MLP can be write in the mathematical form as

ℎ1 = sign(𝑥1 + 𝑥2 − 1.5) (3)
ℎ2 = sign(𝑥1 + 𝑥2 − 0.5) (4)
𝑦 = sign(−ℎ1 + ℎ2 − 0.5) (5)

▶ Each ℎ𝑖 defines a classifier by deviding the input space into two
half-spaces

▶ Equation 3 forms a non-linear classifier by combining two linear
classifiers together
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What about Learning?

▶ Although the previous classifier is simple and intuitive, learning
the parameters are not easy, because function sign(·) is
non-differentiable!

▶ Solution: replace sign(·) function with the Sigmoid function 𝜎(·)
▶ For example, ℎ1 = 𝜎(𝑤1𝑥1 + 𝑤2𝑥2)
▶ In other words, transform each perceptron classifier to a logistic

regresion classifier
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From Logistic Regression to Neu-
ral Networks



Logistic Regression

▶ An unified form for 𝑦 ∈ {−1,+1}

𝑝(𝑌 = +1 | 𝒙) = 1
1 + exp(−⟨𝒘 , 𝒙⟩) (6)

▶ The sigmoid function 𝜎(𝑎)with 𝑎 ∈ ℝ

𝜎(𝑎) = 1
1 + exp(−𝑎) (7)
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Graphical Representation

▶ A specific example of LR

𝑝(𝑌 = 1 | 𝒙) = 𝜎(
2∑
𝑗=1

𝑤 𝑗𝒙·, 𝑗) (8)

▶ The graphical representation of this LR model is

𝑥1

𝑥2

Input
layer

𝑦

Output
layer
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From LR to Neural Networks

Build upon logistic regression, a simple neural network can be
constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (9)

𝑃(𝑦 = 1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (10)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝑦 ∈ {−1,+1} (binary classification problem)
▶ {𝑤(1)

𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝐾 is the number of hidden units, each of them has the same form
as a LR.

11



Mathematical Formulation

▶ Element-wise formulation

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (11)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (12)

▶ Matrix-vector formulation

𝒛 = 𝜎(W(1)𝒙) (13)
𝑃(𝑦 = +1 | 𝒙) = 𝜎((𝒘(𝑜))T𝒛) (14)

where W(1) ∈ ℝ𝐾×𝑑 and w(𝑜) ∈ ℝ𝐾
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Graphical Representation

𝑥·,1

𝑥·,2

Input
layer

𝑧1

𝑧2

𝑧3

Hidden
layer

𝑦

Output
layer

▶ Depth: 2 (two-layer neural network)
▶ Width: 3 (the maximal number of units in each layer)

Demo for solve the XOR problem
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https://phiresky.github.io/neural-network-demo/


Hypothesis Space

The hypothesis space of neural networks is usually defined by the
architecture of the network, which includes

▶ the nodes in the network,
▶ the connections in the network, and
▶ the activation function (e.g., 𝜎, tanh)

𝑥·,1

𝑥·,2

Input
layer

𝑧1

𝑧2

𝑧3

Hidden
layer

𝑦

Output
layer

14



Other Activation Functions

(a) Sign function (b) Tanh function

(c) ReLU function
[Jarrett et al., 2009]
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Expressive Power of Neural Net-
works



Two-layer NNs with Sign Function

Consider a neural network defined by the following functions

𝑧𝑘 = sign(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (15)

ℎ(𝒙) = sign(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (16)

where sign(𝑎) is the sign function.

ℎ(𝒙) can be rewritten as

ℎ(𝒙) = sign ©«
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
· sign(

𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑖
𝑥·, 𝑗)ª®¬ (17)
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Decision Boundary

ℎ(𝒙) is defined by a combination of 𝐾 linear predictors

𝑥1

𝑥2

Similar conclusion applies to other activation functions. [Demo]

[Shalev-Shwartz and Ben-David, 2014, Page 274]
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https://playground.tensorflow.org/


Universal Approximation Theorem

Restrict the inputs 𝑥·, 𝑗 ∈ {−1,+1}∀𝑗 ∈ [𝑑] as binary

Universal Approximation Theorem
For every 𝑑, there exists a two-layer neural network (Equations 15 –
16), such that this hypothesis space contains all functions from
{−1,+1}𝑑 to {−1,+1}

▶ The minimal size of network that satisfies the theorem is
exponential in 𝑑

▶ Similar results hold for 𝜎 as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]
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Learning Neural Networks



Neural Network Predictions

Consider a binary classification problem with Y= {−1,+1},

▶ A two-layer neural network gives the following prediction as

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(18)

where {𝒘(𝑜) ,W(1)} are the parameters
▶ Assume the ground-truth label is 𝑦, let’s introduce an empirical

distribution

𝑞(𝑌 = 𝑦′ | 𝒙) = 𝛿(𝑦′, 𝑦) =
{

1 𝑦′ = 𝑦

0 𝑦′ ≠ 𝑦
(19)
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Cross Entropy

Given one data point, The loss function of a neural network is usually
defined as the cross entropy of the prediction distribution 𝑝 and the
empirical distribution 𝑝

𝐻(𝑞, 𝑝) = −𝑞(𝑌 = +1 | 𝒙) log 𝑝(𝑌 = +1 | 𝒙)
−𝑞(𝑌 = −1 | 𝒙) log 𝑝(𝑌 = −1 | 𝒙) (20)

Since 𝑞 is defined with a Delta function, Depending on 𝑦, we have

𝐻(𝑞, 𝑝) =
{
− log 𝑝(𝑌 = +1 | 𝒙) 𝑌 = +1
− log 𝑝(𝑌 = −1 | 𝒙) 𝑌 = −1

(21)

It is equivalent to the negative log-likelihood (NLL) function used in
learning LR.

22



ERM

▶ Given a set of training example 𝑆 = {(𝒙𝑖 , 𝑦𝑖)}𝑚𝑖=1, the loss function
is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦𝑖 | 𝒙𝑖) (22)

where 𝜽 indicates all the parameters in a network.
▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined

two-layer neural network
▶ Just like learning a LR, we can use gradient-based learning

algorithm
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Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − � · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(23)

where � is the learning rate
3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
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Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(24)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙) (25)

which is in the similar form as the LR updating equation.
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Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

·𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(26)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]
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Computation Graph



Forward Operations

Consider the example of a two-layer neural network

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(27)

A neural network is a composition of some basic functions and
operations. For example

▶ 𝜎(·)
▶ matrix transpose (𝒘(𝑜))T

▶ matrix-vector multiplication W(1)𝒙
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Forward Graph

The computation graph of the two-layer neural network2

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

2For simplicity, the transpose operation is ignored from the graph
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Backward Operations

Similarly, the gradient of neural network parameters are computed
with a series of backward operations associated with the derivative of
some basic function. For example

▶ 𝜕𝜎(𝑥)
𝜕𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

▶ 𝜕𝒂T𝒙
𝜕𝒙 = 𝒂

▶ 𝜕 log(𝑥)
𝜕𝑥 = 1

𝑥

▶ 𝜕W𝒙
𝜕𝒙 =


𝒙T

...

𝒙T
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Backward Graph

With the chain rule, gradient of the loss function with respect to any
parameter can be computed backward step-by-step along the path

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)
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Basic Operators

Every basic operator need to be re-implemented, so it can be attached
to the computation graph, and also have the forward/backward
functions. For example
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Computation Graph

Perform the forward/backward step with a graph of basic operations
(e.g., PyTorch, Tensorflow)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

▶ Modular implementation: implement each module with its
forward/backward operations together

▶ Automatic differentiation: automatically run with the backward
step
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Another Computation Graph

Link
34

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
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