
CS 4774 Machine Learning
Neural Networks

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. From Perceptrons to MLPs

2. From Logistic Regression to Neural Networks

3. Expressive Power of Neural Networks

4. Learning Neural Networks

5. Computation Graph

1

From Perceptrons to MLPs

Perceptrons

▶ X= ℝ𝑑

▶ Y= {−1,+1}
▶ Halfspace hypothesis class

Hhalf = {sign(⟨𝒘 , 𝒙⟩) : 𝒘 ∈ ℝ𝑑} (1)

which is an infinite hypothesis space.

The sign function 𝑦 = sign(𝑥) is defined as

3

The XOR Problem

𝑦 = 𝑥1 ⊕ 𝑥2 (2)

4

A Multi-Layer Perceptron

The problem can be solved by stacking three perceptrons together, for
example,

The new model is called Multi-Layer Perceptron (MLP).

5

Geometric Interpretation

The previous MLP can be write in the mathematical form as

ℎ1 = sign(𝑥1 + 𝑥2 − 1.5) (3)
ℎ2 = sign(𝑥1 + 𝑥2 − 0.5) (4)
𝑦 = sign(−ℎ1 + ℎ2 − 0.5) (5)

▶ Each ℎ𝑖 defines a classifier by deviding the input space into two
half-spaces

▶ Equation 3 forms a non-linear classifier by combining two linear
classifiers together

6

What about Learning?

▶ Although the previous classifier is simple and intuitive, learning
the parameters are not easy, because function sign(·) is
non-differentiable!

▶ Solution: replace sign(·) function with the Sigmoid function 𝜎(·)
▶ For example, ℎ1 = 𝜎(𝑤1𝑥1 + 𝑤2𝑥2)
▶ In other words, transform each perceptron classifier to a logistic

regresion classifier

7

From Logistic Regression to Neu-
ral Networks

Logistic Regression

▶ An unified form for 𝑦 ∈ {−1,+1}

𝑝(𝑌 = +1 | 𝒙) = 1
1 + exp(−⟨𝒘 , 𝒙⟩) (6)

▶ The sigmoid function 𝜎(𝑎)with 𝑎 ∈ ℝ

𝜎(𝑎) = 1
1 + exp(−𝑎) (7)

9

Graphical Representation

▶ A specific example of LR

𝑝(𝑌 = 1 | 𝒙) = 𝜎(
2∑
𝑗=1

𝑤 𝑗𝒙·, 𝑗) (8)

▶ The graphical representation of this LR model is

𝑥1

𝑥2

Input
layer

𝑦

Output
layer

10

From LR to Neural Networks

Build upon logistic regression, a simple neural network can be
constructed as

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (9)

𝑃(𝑦 = 1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (10)

▶ 𝒙 ∈ ℝ𝑑: 𝑑-dimensional input
▶ 𝑦 ∈ {−1,+1} (binary classification problem)
▶ {𝑤(1)

𝑘,𝑖
} and {𝑤(𝑜)

𝑘
} are two sets of the parameters, and

▶ 𝐾 is the number of hidden units, each of them has the same form
as a LR.

11

Mathematical Formulation

▶ Element-wise formulation

𝑧𝑘 = 𝜎(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (11)

𝑃(𝑦 = +1 | 𝒙) = 𝜎(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (12)

▶ Matrix-vector formulation

𝒛 = 𝜎(W(1)𝒙) (13)
𝑃(𝑦 = +1 | 𝒙) = 𝜎((𝒘(𝑜))T𝒛) (14)

where W(1) ∈ ℝ𝐾×𝑑 and w(𝑜) ∈ ℝ𝐾

12

Graphical Representation

𝑥·,1

𝑥·,2

Input
layer

𝑧1

𝑧2

𝑧3

Hidden
layer

𝑦

Output
layer

▶ Depth: 2 (two-layer neural network)
▶ Width: 3 (the maximal number of units in each layer)

Demo for solve the XOR problem

13

https://phiresky.github.io/neural-network-demo/

Hypothesis Space

The hypothesis space of neural networks is usually defined by the
architecture of the network, which includes

▶ the nodes in the network,
▶ the connections in the network, and
▶ the activation function (e.g., 𝜎, tanh)

𝑥·,1

𝑥·,2

Input
layer

𝑧1

𝑧2

𝑧3

Hidden
layer

𝑦

Output
layer

14

Other Activation Functions

(a) Sign function (b) Tanh function

(c) ReLU function
[Jarrett et al., 2009]

15

Expressive Power of Neural Net-
works

Two-layer NNs with Sign Function

Consider a neural network defined by the following functions

𝑧𝑘 = sign(
𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑗
𝑥·, 𝑗) 𝑘 ∈ [𝐾] (15)

ℎ(𝒙) = sign(
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
𝑧𝑘) (16)

where sign(𝑎) is the sign function.

ℎ(𝒙) can be rewritten as

ℎ(𝒙) = sign ©«
𝐾∑
𝑘=1

𝑤
(𝑜)
𝑘
· sign(

𝑑∑
𝑗=1

𝑤
(1)
𝑘,𝑖
𝑥·, 𝑗)ª®¬ (17)

17

Decision Boundary

ℎ(𝒙) is defined by a combination of 𝐾 linear predictors

𝑥1

𝑥2

Similar conclusion applies to other activation functions. [Demo]

[Shalev-Shwartz and Ben-David, 2014, Page 274]

18

https://playground.tensorflow.org/

Universal Approximation Theorem

Restrict the inputs 𝑥·, 𝑗 ∈ {−1,+1}∀𝑗 ∈ [𝑑] as binary

Universal Approximation Theorem
For every 𝑑, there exists a two-layer neural network (Equations 15 –
16), such that this hypothesis space contains all functions from
{−1,+1}𝑑 to {−1,+1}

▶ The minimal size of network that satisfies the theorem is
exponential in 𝑑

▶ Similar results hold for 𝜎 as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]

19

Learning Neural Networks

Neural Network Predictions

Consider a binary classification problem with Y= {−1,+1},

▶ A two-layer neural network gives the following prediction as

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(18)

where {𝒘(𝑜) ,W(1)} are the parameters
▶ Assume the ground-truth label is 𝑦, let’s introduce an empirical

distribution

𝑞(𝑌 = 𝑦′ | 𝒙) = 𝛿(𝑦′, 𝑦) =
{

1 𝑦′ = 𝑦

0 𝑦′ ≠ 𝑦
(19)

21

Cross Entropy

Given one data point, The loss function of a neural network is usually
defined as the cross entropy of the prediction distribution 𝑝 and the
empirical distribution 𝑝

𝐻(𝑞, 𝑝) = −𝑞(𝑌 = +1 | 𝒙) log 𝑝(𝑌 = +1 | 𝒙)
−𝑞(𝑌 = −1 | 𝒙) log 𝑝(𝑌 = −1 | 𝒙) (20)

Since 𝑞 is defined with a Delta function, Depending on 𝑦, we have

𝐻(𝑞, 𝑝) =
{
− log 𝑝(𝑌 = +1 | 𝒙) 𝑌 = +1
− log 𝑝(𝑌 = −1 | 𝒙) 𝑌 = −1

(21)

It is equivalent to the negative log-likelihood (NLL) function used in
learning LR.

22

ERM

▶ Given a set of training example 𝑆 = {(𝒙𝑖 , 𝑦𝑖)}𝑚𝑖=1, the loss function
is defined as

𝐿(𝜽) = −
𝑚∑
𝑖=1

log 𝑝(𝑦𝑖 | 𝒙𝑖) (22)

where 𝜽 indicates all the parameters in a network.
▶ For example, 𝜽 = {𝒘(𝑜) ,W(1)}, for the previously defined

two-layer neural network
▶ Just like learning a LR, we can use gradient-based learning

algorithm

23

Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of 𝜽, 𝜕𝐿(𝜽)
𝜕𝜽

2. Update the parameter with the gradient

𝜽(new) ← 𝜽(old) − � · 𝜕𝐿(𝜽)
𝜕𝜽

���
𝜽=𝜽(old)

(23)

where � is the learning rate
3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
24

Gradient Computation

Consider the two-layer neural network with one training example
(𝒙 , 𝑦), to further simplify the computation, we assume 𝑦 = +1

log 𝑝(𝑦 | 𝒙) = log 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(24)

The gradient with respect to 𝒘(𝑜) is

𝜕𝐿(𝜽)
𝜕𝒘(𝑜)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

· 𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝒘(𝑜)

= −
{
1 − 𝜎

(
(𝒘(𝑜))T𝜎(W(1)𝒙)

) }
· 𝜎(W(1)𝒙) (25)

which is in the similar form as the LR updating equation.

25

Gradient Computation (II)

The gradient with respect to𝑊 (1) is

𝜕𝐿(𝜽)
𝜕W(1)

= −
𝜕 log 𝜎

(
·
)

𝜕𝜎
(
·
) ·

𝜕𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
𝜕(𝒘(𝑜))T𝜎(W(1)𝒙)

·𝜕(𝒘
(𝑜))T𝜎(W(1)𝒙)
𝜕𝜎(W(1)𝒙)

· 𝜕𝜎(W
(1)𝒙)

𝜕W(1)𝒙
· 𝜕W(1)𝒙
𝜕W(1)

(26)

▶ Both of them are the applications of the chain rule in calculus
plus some derivatives of basic functions

▶ In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

26

Computation Graph

Forward Operations

Consider the example of a two-layer neural network

𝑃(𝑌 = +1 | 𝒙) = 𝜎
(
(𝒘(𝑜))T𝜎(W(1)𝒙)

)
(27)

A neural network is a composition of some basic functions and
operations. For example

▶ 𝜎(·)
▶ matrix transpose (𝒘(𝑜))T

▶ matrix-vector multiplication W(1)𝒙

28

Forward Graph

The computation graph of the two-layer neural network2

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

2For simplicity, the transpose operation is ignored from the graph
29

Backward Operations

Similarly, the gradient of neural network parameters are computed
with a series of backward operations associated with the derivative of
some basic function. For example

▶ 𝜕𝜎(𝑥)
𝜕𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

▶ 𝜕𝒂T𝒙
𝜕𝒙 = 𝒂

▶ 𝜕 log(𝑥)
𝜕𝑥 = 1

𝑥

▶ 𝜕W𝒙
𝜕𝒙 =

𝒙T

...

𝒙T

30

Backward Graph

With the chain rule, gradient of the loss function with respect to any
parameter can be computed backward step-by-step along the path

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

31

Basic Operators

Every basic operator need to be re-implemented, so it can be attached
to the computation graph, and also have the forward/backward
functions. For example

32

Computation Graph

Perform the forward/backward step with a graph of basic operations
(e.g., PyTorch, Tensorflow)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

𝑝(𝑌 | 𝒙)

𝒙

W(1) · 𝒙W(1)

𝜎

(𝒘(𝑜))T𝒛𝒘(𝑜)

𝜎

− log 𝑝(𝑌 | 𝒙)

𝜕(W(1) · 𝒙)

𝜕𝜎

𝜕((𝒘(𝑜))T𝒛)

𝜕𝜎

𝜕W(1)

𝜕𝒘(𝑜)

▶ Modular implementation: implement each module with its
forward/backward operations together

▶ Automatic differentiation: automatically run with the backward
step

33

Another Computation Graph

Link
34

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

Reference

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009).
What is the best multi-stage architecture for object recognition?
In Proceedings of the 12th International Conference on Computer Vision, pages 2146–2153. IEEE.

LeCun, Y. (2020).
Self-supervised learning.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323(6088):533–536.

Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding machine learning: From theory to algorithms.
Cambridge university press.

35

	Overview
	From Perceptrons to MLPs
	From Logistic Regression to Neural Networks
	Expressive Power of Neural Networks
	Learning Neural Networks
	Computation Graph

