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Overview



Polynominals

Polynomial regression

(a) 𝑑 = 1 (b) 𝑑 = 3

(c) 𝑑 = 15
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Model Evaluation and Selection

Since we cannot compute the true error of any given hypothesis
ℎ ∈ H

▶ How to evaluate the performance for a given model?
▶ How to select the best model among a few candidates?

4



Model Validation



Validation Set

The simplest way to estimate the true error of a predictor ℎ

▶ Independently sample an additional set of examples 𝑉 with size
𝑚𝑣

𝑉 = {(𝒙1 , 𝑦1), . . . , (𝒙𝑚𝑣 , 𝑦𝑚𝑣 )} (1)

▶ Evaluate the predictor ℎ on this validation set

𝐿𝑉 (ℎ) =
|{𝑖 ∈ [𝑚𝑣] : ℎ(𝒙) ≠ 𝑦𝑖}|

𝑚𝑣
. (2)

Usually, 𝐿𝑉 (ℎ) is a good approximation to 𝐿D(ℎ)
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Model Selection



Model Selection Procedure

Given the training set 𝑆 and the validation set 𝑉

▶ For each model configuration 𝑐, find the best hypothesis ℎ𝑐(𝒙 , 𝑆)

ℎ𝑐(𝒙 , 𝑆) = argmin
ℎ′∈H𝑐

𝐿𝑆(ℎ′(𝒙 , 𝑆)) (3)

▶ With a collection of best models with different configurations
H′ = {ℎ𝑐1(𝒙 , 𝑆), . . . , ℎ𝑐𝑘 (𝒙 , 𝑆)}, find the overall best hypothesis

ℎ(𝒙 , 𝑆) = argmin
ℎ′∈H′

𝐿𝑉 (ℎ′(𝒙 , 𝑆)) (4)

▶ It is similar to learn with the finite hypothesis space H′
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Model Configuration/Hyperparameters

Consider polynomial regression

H𝑑 = {𝑤0 + 𝑤1𝑥 + · · · + 𝑤𝑑𝑥
𝑑 : 𝑤0 , 𝑤1 , . . . , 𝑤𝑑 ∈ ℝ} (5)

▶ the degree of polynomials 𝑑

▶ regularization coefficient 𝜆 as in 𝜆 · ∥𝒘∥22
▶ the bias term 𝑤0

Additional factors during learning

▶ Optimization methods
▶ Dimensionality of inputs, etc.
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Limitation of Keeping a Validation Set

If the validation set is

▶ small, then it could be biased and could not give a good
approximation to the true error

▶ large, e.g., the same order of the training set, then we waste the
information if do not use the examples for training.
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𝑘-Fold Cross Validation

The basic procedure of 𝑘-fold cross validation:

▶ Split the whole data set into 𝑘 parts

▶ For each model configuration, run the learning procedure 𝑘

times
▶ Each time, pick one part as validation set and the rest as training set

▶ Take the average of 𝑘 validation errors as the model error

Data
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Cross-Validation Algorithm

1: Input: (1) training set 𝑆; (2) set of parameter values Θ; (3)
learning algorithm 𝐴, and (4) integer 𝑘

2: Partition 𝑆 into 𝑆1 , 𝑆2 , . . . , 𝑆𝑘

3: for 𝜃𝑡 ∈ Θ do
4: for 𝑖 = 1, . . . , 𝑘 do
5: ℎ𝑖 ,𝜃𝑡 = 𝐴(𝑆\𝑆𝑖 ;𝜃𝑡)
6: end for
7: Err(𝜃𝑡) = 1

𝑘

∑𝑘
𝑖=1 𝐿𝑆𝑖 (ℎ𝑖 ,𝜃𝑡 )

8: end for
9: Output: 𝜃̂← argmin𝜃𝑡∈Θ Err(𝜃𝑡)

In practice, 𝑘 is usually 5 or 10.
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Train-Validation-Test Split

▶ Training set: used for learning with a pre-selected hypothesis
space, such as
▶ logistic regression for classification
▶ polynomial regression with 𝑑 = 15 and 𝜆 = 0.1

▶ Validation set: used for selecting the best hypothesis across
multiple hypothesis spaces
▶ Similar to learning with a finite hypothesis space H′

▶ Test set: only used for evaluating the overall best hypothesis

Typical splits on all available data
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Model Selection in Practice



What To Do If A Learning Fails

There are many elements that can help fix the learning procedure

▶ Get a larger sample

▶ Change the hypothesis class by
▶ Enlarging it
▶ Reducing it
▶ Completely changing it
▶ Changing the parameters you consider

▶ Change the feature representation of the data (usually domain
dependent)

▶ Change the optimization algorithm used to apply your learning
rule (lecture on optimization methods)

[Shalev-Shwartz and Ben-David, 2014, Page 151]
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Error Decomposition Using Validation

With two additional terms

▶ 𝐿𝑉 (ℎ𝑆): validation error
▶ 𝐿𝑆(ℎ𝑆): empirical (or training) error

the true error of ℎ𝑆 can be decomposed as

𝐿D(ℎ𝑆) = (𝐿D(ℎ𝑆) − 𝐿𝑉 (ℎ𝑆))︸                 ︷︷                 ︸
(1)

+ (𝐿𝑉 (ℎ𝑆) − 𝐿𝑆(ℎ𝑆))︸                ︷︷                ︸
(2)

+ 𝐿𝑆(ℎ𝑆)︸ ︷︷ ︸
(3)

▶ Item (1) is bounded by the previous theorem
▶ Item (2) is large: overfitting
▶ Item (3) is large: underfitting
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About Large 𝐿𝑆(ℎ𝑆)

Recall that ℎ𝑆 is an ERM hypothesis, aka

ℎ𝑆 ∈ argmin
ℎ′∈H

𝐿𝑆(ℎ′) (6)

If 𝐿𝑆(ℎ𝑆) is large, it is possible that

1. the hypothesis space H is not large enough
2. the hypothesis space is large enough, but your implementation

has some bugs

Q: How to distinguish these two?
A: Find an existing simple baseline model
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About Large 𝐿𝑉(ℎ𝑆)

... with a small 𝐿𝑆(ℎ𝑆), it is possible that

1. the hypothesis space is too large
2. you may not have enough training examples
3. the hypothesis space is inappropriate

Comments

▶ Issue 1 and 2 are easy to fix
▶ Get more data if possible, or reduce the hypothesis space

▶ How to distinguish issue 3 from 1 and 2?
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Learning Curves

With different proportions of training examples, we can plot the
training and validation errors

(a)

(b)

Figure: Examples of learning curves [Shalev-Shwartz and Ben-David, 2014,
Page 153].
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