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Review: Linear Functions



Linear Functions

Consider a two-dimensional case with 𝒘 = (1, 1,−0.5)

𝑓 (𝒙) = 𝒘T𝒙 + 𝑏 = 𝑥1 + 𝑥2 − 0.5 (1)

𝑥1

𝑥2

Different values of 𝑓 (𝒙) map to different areas on this 2-D space. For
example, the following equation defines the blue line 𝐿.

𝑓 (𝒙) = 𝒘T𝒙 + 𝑏 = 0 (2)
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Properties of Linear Functions (Cont.)

Furthermore,
𝑓 (𝒙) = 𝑥1 + 𝑥2 − 0.5 = 0 (3)

separates the 2-D space ℝ2 into two half spaces

𝑥1

𝑥2

𝑓 (𝒙) > 0

𝑓 (𝒙) < 0
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Properties of Linear Functions (Cont.)

The distance of point 𝒙 to line 𝐿 : 𝑓 (𝒙) = ⟨𝒘 , 𝒙⟩ + 𝑏 = 0 is given by

𝑓 (𝒙)
∥𝒘∥2

=
⟨𝒘 , 𝒙⟩ + 𝑏

∥𝒙∥2
= ⟨ 𝒘

∥𝒘∥2
, 𝒙⟩ + 𝑏

∥𝒘∥2
(4)

𝑥1

𝑥2

𝒙
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Separable Cases



Geometric Margin

The geometric margin of a linear binary classifier ℎ(𝒙) = ⟨𝒘 , 𝒙⟩ + 𝑏 at
a point 𝒙 is its distance to the hyper-plane ⟨𝒘 , 𝒙⟩ = 0

𝜌ℎ(𝒙) =
|⟨𝒘 , 𝒙⟩ + 𝑏 |

∥𝒘∥2
(5)
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Geometric Margin (II)

The geometric margin of ℎ(𝒙) on a set of examples 𝑇 = {𝒙1 , . . . , 𝒙𝑚} is
the minimal distance over these examples

𝜌ℎ(𝑇) = min
𝒙′∈𝑇

𝜌ℎ(𝒙′) (6)

[Mohri et al., 2018, Page 80]
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Half-Space Hypothesis Space

▶ Training set 𝑆 = {(𝒙1 , 𝑦1), . . . , (𝒙𝑚 , 𝑦𝑚)} with 𝒙𝑖 ∈ ℝ𝑑 and
𝑦𝑖 ∈ {+1,−1}

▶ If the training set is linearly separable

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) > 0 ∀𝑖 ∈ [𝑚] (7)

▶ Linearly separable cases
▶ Existence of equation 7
▶ All halfspace predictors that satisfy the condition in equation 7 are

ERM hypotheses
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Which Hypothesis is Better?

Is the one represented by the green line or the black dashed line?

▶ Intuitively, a hypothesis with larger margin is better, because it is
more robust to noise

▶ Final definition of margin will be provided later

[Shalev-Shwartz and Ben-David, 2014, Page 203] 10
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Hard SVM/Separable Cases

The mathematical formulation of the previous idea

𝜌 = max
(𝒘 ,𝑏)

min
𝑖∈[𝑚]

|⟨𝒘 , 𝒙𝑖⟩ + 𝑏 |
∥𝒘∥2

(8)

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) > 0 ∀𝑖 (9)

s.t. means subject to in optimization, to introduce constraints
Notations:

▶ 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) > 0 ∀𝑖: guarantee (𝒘 , 𝑏) is an ERM hypothesis

▶ min𝑖∈[𝑚]: calculate the margin between a hyper-plane and a set of
examples

▶ max(𝒘 ,𝑏): maximize the margin

Overall, the optimization problem is to find a hypothesis that (1)
classifies all training example correctly and (2) also has the largest
margin.
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Illustration

Original form

𝜌 = max
(𝒘 ,𝑏)

min
𝑖∈[𝑚]

|⟨𝒘 , 𝒙𝑖⟩ + 𝑏 |
∥𝒘∥2

(10)

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) > 0 ∀𝑖 (11)

An example with the margin as 1
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Alternative Forms

▶ Original form

𝜌 = max
(𝒘 ,𝑏)

min
𝑖∈[𝑚]

|⟨𝒘 , 𝒙𝑖⟩ + 𝑏 |
∥𝒘∥2

(12)

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) > 0 ∀𝑖 (13)

▶ Alternative form 1

𝜌 = max
(𝒘 ,𝑏)

min
𝑖∈[𝑚]

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏)
∥𝒘∥2

(14)

▶ Alternative form 2

𝜌 = max
(𝒘 ,𝑏): min𝑖∈[𝑚] 𝑦𝑖 (⟨𝒘 ,𝒙𝑖⟩+𝑏=1

1
∥𝒘∥2

(15)

= max
(𝒘 ,𝑏): 𝑦𝑖 (⟨𝒘 ,𝒙𝑖⟩+𝑏≥1

1
∥𝒘∥2

(16)
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Alternative Forms (II)

▶ Alternative form 2

𝜌 = max
(𝒘 ,𝑏): 𝑦𝑖 (⟨𝒘 ,𝒙𝑖⟩+𝑏≥1

1
∥𝒘∥2

(17)

▶ Alternative form 3: Quadratic programming (QP)

min
(𝒘 ,𝑏)

1
2 ∥𝒘∥2

2

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1, ∀𝑖 ∈ [𝑚]
(18)

which is a constrained optimization problem that can be solved
by standard QP packages
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Unconstrained Optimization Problem

The quadratic programming problem with constraints can be
converted to an unconstrained optimization problem with the
Lagrangian method

𝐿(𝒘 , 𝑏, 𝜶) = 1
2 ∥𝒘∥2

2 −
𝑚∑
𝑖=1

𝛼𝑖(𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) − 1) (19)

where

▶ 𝜶 = {𝛼1 , . . . , 𝛼𝑚} is the Lagrange multiplier, and
▶ 𝛼𝑖 ≥ 0 is associated with the 𝑖-th training example

Can you identify the similarity between Eq. 19 and regularized linear
regression?
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SVM Online Demo

Link
16

https://jgreitemann.github.io/svm-demo


Constrained Optimization



Constrained Optimization Problems: Definition

A generic formulation of constrained optimization

▶ X⊆ ℝ𝑑 and
▶ 𝑓 , 𝑔𝑖 : X→ ℝ, ∀𝑖 ∈ [𝑚]

Then, a constrained optimization problem is defined in the form of

min
𝒙∈X

𝑓 (𝒙) (20)

s.t. 𝑔𝑖(𝒙) ≤ 0,∀𝑖 ∈ [𝑚] (21)

Comments

▶ Unlike a learning problem, here 𝒙 is the target variable for
optimization

▶ Special cases of 𝑔𝑖(𝒙): (1) 𝑔𝑖(𝒙) = 0, (2) 𝑔𝑖(𝒙) ≥ 0, and (3) 𝑔𝑖(𝒙) ≤ 𝑏
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Lagrangian

The Lagrangian associated to the general constrained optimization
problem defined in equation 20 – 21 is the function defined over
X×ℝ𝑚

+ as

𝐿(𝒙 , 𝜶) = 𝑓 (𝒙) +
𝑚∑
𝑖=1

𝛼𝑖 𝑔𝑖(𝒙) (22)

where

▶ 𝜶 = (𝛼1 , . . . , 𝛼𝑚) ∈ ℝ𝑚
+

▶ 𝛼𝑖 ≥ 0 for any 𝑖 ∈ [𝑚]
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Karush-Kuhn-Tucker’s Theorem

Assume that 𝑓 , 𝑔𝑖 : X→ ℝ, ∀𝑖 ∈ [𝑚] are convex and differentiable
and that the constraints are qualified. Then 𝒙′ is a solution of the
constrained problem if and only if there exist 𝜶′ ≥ 0 such that

∇𝒙𝐿(𝒙′, 𝜶′) = ∇𝒙 𝑓 (𝒙′) + 𝜶′ · ∇𝒙 𝑔(𝒙) = 0 (23)
∇𝜶𝐿(𝒙 , 𝜶) = 𝑔(𝒙′) ≤ 0 (24)

𝜶′ · 𝑔(𝒙′) =

𝑚∑
𝑖=1

𝛼′
𝑖 𝑔𝑖(𝒙

′) = 0 (25)

Equations 23 – 25 are called KKT conditions

[Mohri et al., 2018, Thm B.30]
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KKT in SVM

Apply the KKT conditions to the SVM problem

𝐿(𝒘 , 𝑏, 𝜶) = 1
2 ∥𝒘∥2

2 −
𝑚∑
𝑖=1

𝛼𝑖(𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) − 1) (26)

We have

∇𝒘𝐿 = 𝒘 −
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 = 0 ⇒ 𝒘 =

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖

∇𝑏𝐿 = −
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0 ⇒
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

∀𝑖 , 𝛼𝑖(𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) − 1) = 0 ⇒ 𝛼𝑖 = 0 or 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) = 1
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Support Vectors

Consider the implication of the last equation in the previous page, ∀𝑖

▶ 𝛼𝑖 > 0 and 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) = 1
or

▶ 𝛼𝑖 = 0 and 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1

𝒘 =

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 (27)

▶ Examples with 𝛼𝑖 > 0 are called support vectors
▶ In ℝ𝑑, 𝑑 + 1 examples are sufficient to define a hyper-plane
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Non-separable Cases

Recall the separable case:

min
(𝒘 ,𝑏)

1
2 ∥𝒘∥2

2

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1, ∀𝑖 ∈ [𝑚]
(28)

For non-separable cases, there always exists an 𝒙𝑖 , such that

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≱ 1 (29)

or, we can formulate it as

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1 − �𝑖 (30)

with �𝑖 ≥ 0
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s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1, ∀𝑖 ∈ [𝑚]
(28)

For non-separable cases, there always exists an 𝒙𝑖 , such that

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≱ 1 (29)

or, we can formulate it as

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1 − �𝑖 (30)

with �𝑖 ≥ 0
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Geometric Meaning of �𝑖

Consider the relaxed constraint

𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1 − �𝑖 (31)

and three cases of �𝑖

▶ �𝑖 = 0
▶ 0 < �𝑖 < 1
▶ �𝑖 ≥ 1
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Non-separable Cases (II)

In general, the SVM problem of non-separable cases can be
formulated as

min
(𝒘 ,𝑏)

1
2 ∥𝒘∥2

2 + 𝐶
𝑚∑
𝑖=1

�
𝑝

𝑖

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1 − �𝑖 , ∀𝑖 ∈ [𝑚]
�𝑖 ≥ 0

(32)

where 𝐶 ≥ 0, 𝑝 ≥ 1, and {�𝑖}𝑚𝑖=1 ≥ 0 are known as slack variables and
are commonly used in optimization to define relaxed versions of
constraints.
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Lagrangian

Follows the same procedure as the separable cases, the Lagrangian is
defined as

𝐿(𝒘 , 𝑏, 𝝃, 𝜶, 𝜷) =1
2 ∥𝒘∥2

2 + 𝐶
𝑚∑
𝑖=1

�𝑖

−
𝑚∑
𝑖=1

𝛼𝑖(𝑦𝑖(𝒘T𝒙𝑖 + 𝑏) − 1 + �𝑖)

−
𝑚∑
𝑖=1

𝛽𝑖�𝑖

(33)

with 𝛼𝑖 , 𝛽𝑖 ≥ 0
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Support Vectors

The first two equations in the KKT conditions are similar to the
separable cases, and the rest are

𝛼𝑖 + 𝛽𝑖 = 𝐶 (34)
𝛼𝑖 = 0 or 𝑦𝑖(𝒘T𝒙𝑖 + 𝑏) = 1 − �𝑖 (35)
𝛽𝑖 = 0 or �𝑖 = 0 (36)

Depending the value of �𝑖 , there are two types of support vectors

▶ �𝑖 = 0: 𝛽𝑖 ≥ 0 and 0 < 𝛼𝑖 ≤ 𝐶

▶ 𝒙𝑖 may lie on the marginal hyper-planes (as in the separable case)

▶ �𝑖 > 0: 𝛽𝑖 = 0 and 𝛼𝑖 = 𝐶

▶ 𝒙𝑖 is an outlier
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Support Vectors (II)

Two types of support vectors

▶ 𝛼𝑖 = 𝐶: 𝒙𝑖 is an outlier
▶ 0 < 𝛼𝑖 < 𝐶: 𝒙𝑖 lies on the marginal hyper-planes
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Dual Optimization Problem



Lagrangian

Combine the Lagrangian

𝐿 =
1
2 ∥𝒘∥2

2 −
𝑚∑
𝑖=1

𝛼𝑖[𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) − 1]

=
1
2 ∥𝒘∥2

2 −
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 ⟨𝒘 , 𝒙𝑖⟩ − 𝑏
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 +
𝑚∑
𝑖=1

𝛼𝑖

with some of the KKT conditions

𝒘 =

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 (37)

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, (38)

we have ...
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Dual Problem

𝐿 =
1
2 ∥

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 ∥2
2 −

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩

− 𝑏
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖︸     ︷︷     ︸
=0

+
𝑚∑
𝑖=1

𝛼𝑖
(39)

Given ∥∑𝑚
𝑖=1 𝛼𝑖𝑦𝑖𝒙𝑖 ∥2

2 =
∑𝑚
𝑖=1

∑𝑚
𝑗=1 𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩, we have

𝐿 = −1
2

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩ +
𝑚∑
𝑖=1

𝛼𝑖 (40)
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Dual Problem

𝐿 =
1
2 ∥

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 ∥2
2 −

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩

− 𝑏
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖︸     ︷︷     ︸
=0

+
𝑚∑
𝑖=1

𝛼𝑖
(39)

Given ∥∑𝑚
𝑖=1 𝛼𝑖𝑦𝑖𝒙𝑖 ∥2

2 =
∑𝑚
𝑖=1

∑𝑚
𝑗=1 𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩, we have

𝐿 = −1
2

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩ +
𝑚∑
𝑖=1

𝛼𝑖 (40)
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Dual Problem (II)

The dual optimization problem for SVMs of the separable cases is

max
𝜶

𝑚∑
𝑖=1

𝛼𝑖 −
1
2

𝑚∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩ (41)

s.t. 𝛼𝑖 ≥ 0 (42)
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0 ∀𝑖 ∈ [𝑚] (43)

▶ Lagrange multiplier 𝜶 is also called dual variable
▶ This is an optimization problem only about 𝜶

▶ The dual problem is defined on the inner product ⟨𝒙𝑖 , 𝒙 𝑗⟩
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Primal and Dual Problem

▶ Primal problem

min
(𝒘 ,𝑏)

1
2 ∥𝒘∥2

2

s.t. 𝑦𝑖(⟨𝒘 , 𝒙𝑖⟩ + 𝑏) ≥ 1, ∀𝑖 ∈ [𝑚]
(44)

▶ Dual problem

max
𝜶

𝑚∑
𝑖=1

𝛼𝑖 −
1
2

𝑚∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗 ⟨𝒙𝑖 , 𝒙 𝑗⟩

s.t.
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0 and 𝛼𝑖 ≥ 0 ∀𝑖 ∈ [𝑚]
(45)

▶ These two problems are equivalent

[Boyd and Vandenberghe, 2004, Chapter 5]
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SVM Hypothesis, revisited

Once we solve the dual problem with 𝜶, we have the solution of 𝒘 as

𝒘 =

𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 (46)

and the hypothesis ℎ(𝒙) as

ℎ(𝒙) = sign(⟨𝒘 , 𝒙⟩ + 𝑏) (47)

= sign(⟨
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝒙𝑖 , 𝒙⟩ + 𝑏) (48)

= sign(
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 ⟨𝒙𝑖 , 𝒙⟩ + 𝑏)

(49)

▶ In addition, we also have 𝑏 = 𝑦𝑖 −
∑𝑚
𝑖=1 𝛼𝑖𝑦𝑖 ⟨𝒙𝑖 , 𝒙⟩ for any 𝒙𝑖 with

𝛼𝑖 > 0
▶ Therefore, everything can be represented in the form of dot

product
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Kernel Methods



Properties of Inner Product

In the solution of SVMs

ℎ(𝒙) = sign(
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 ⟨𝒙𝑖 , 𝒙⟩ + 𝑏)

𝑏 = 𝑦𝑖 −
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 ⟨𝒙𝑖 , 𝒙⟩
(50)

Extend the capacity of SVMs by replacing the inner product ⟨𝒙𝑖 , 𝒙⟩
with a kernel function

𝐾(𝒙𝑖 , 𝒙) = ⟨Φ(𝒙𝑖),Φ(𝒙)⟩ (51)

where Φ(·) is a nonlinear mapping function.
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SVMs with Kernel Functions

▶ Problem definition

max
𝜶

𝑚∑
𝑖=1

𝛼𝑖 −
1
2

𝑚∑
𝑖 , 𝑗=1

𝛼𝑖𝛼 𝑗𝑦𝑖𝑦 𝑗𝐾(𝒙𝑖 , 𝒙 𝑗)

s.t. 𝛼𝑖 ≥ 0 and
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, 𝑖 ∈ [𝑚]
(52)

▶ Solution: separable case

ℎ(𝒙) = sign

(
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒙) + 𝑏
)

(53)

with 𝑏 = 𝑦𝑖 −
∑𝑚
𝑗=1 𝛼 𝑗𝑦 𝑗𝐾(𝒙 𝑗 , 𝒙𝑖) for any 𝒙𝑖 with 𝛼𝑖 > 0
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Examples: Polynomial Kernels

For any constant 𝛾 > 0, 𝑐 ≥ 0, a polynomial kernel of degree 𝑑 ∈ ℕ is
the kernel 𝐾 defined over ℝ𝑛 by

𝐾(𝒙 , 𝒙′) = (𝛾⟨𝒙 , 𝒙′⟩ + 𝑐)𝑑 ,∀𝒙 , 𝒙′ ∈ ℝ𝑛 (54)

Special cases

▶ 𝑑 = 1: 𝐾(𝒙 , 𝒙′) = 𝛾⟨𝒙 , 𝒙′⟩ + 𝑐
▶ 𝑑 = 2: 𝐾(𝒙 , 𝒙′) = (𝛾⟨𝒙 , 𝒙′⟩ + 𝑐)2
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Examples: Polynomial Kernels (II)

For the special case with 𝑑 = 2, assume 𝒙 , 𝒙′ ∈ ℝ2 (let 𝛾 = 1 for
simplicity)

𝐾(𝒙 , 𝒙′) = (⟨𝒙 , 𝒙′⟩ + 𝑐)2 (55)

= (𝑥1𝑥
′
1 + 𝑥2𝑥

′
2 + 𝑐)2 (56)

= 𝑥2
1𝑥

′2
1 + 𝑥1𝑥2𝑥

′
1𝑥

′
2 + 𝑐𝑥1𝑥

′
1 + 𝑥1𝑥2𝑥

′
1𝑥

′
2

+𝑥2
2𝑥

′2
2 + 𝑐𝑥2𝑥

′
2 + 𝑐𝑥1𝑥

′
1 + 𝑐𝑥2𝑥

′
2 + 𝑐2 (57)

= 𝑥2
1𝑥

′2
1 + 𝑥2

2𝑥
′2
2 + 2𝑥1𝑥

′
1𝑥2𝑥

′
2 (58)

+2𝑐𝑥1𝑥
′
1 + 2𝑐𝑥2𝑥

′
2 + 𝑐2 (59)

= [𝑥2
1 , 𝑥

2
2 ,
√

2𝑥1𝑥2 ,
√

2𝑐𝑥1 ,
√

2𝑐𝑥2 , 𝑐]



𝑥′21
𝑥′22√

2𝑥′1𝑥′2√
2𝑐𝑥′1√
2𝑐𝑥′2
𝑐


Exercise: Find out the Φ(𝒙) function in 𝐾(𝒙 , 𝒙′) = (⟨𝒙 , 𝒙′⟩ + 𝑐)3
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Examples: Polynomial Kernels (III)

Let 𝐾(𝒙 , 𝒙′) = ⟨Φ(𝒙),Φ(𝒙′)⟩, then

Φ(𝒙) = [𝑥2
1 , 𝑥

2
2 ,
√

2𝑥1𝑥2 ,
√

2𝑐𝑥1 ,
√

2𝑐𝑥2 , 𝑐]T (60)

which maps a 2-D data point 𝒙 into a 6-D space as Φ(𝒙)

Recall the
XOR problem

Try the online demo

41

https://jgreitemann.github.io/svm-demo
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Gaussian Kernels

For any constant 𝛾 > 0, a Gaussian kernel or radial basis function
(RBF) is the kernel 𝐾 defined over ℝ𝑑 by

𝐾(𝒙 , 𝒙′) = exp
(
−𝛾∥𝒙′ − 𝒙∥2

2

)
(61)

𝑥1

𝑥2

▶ What Φ(𝒙) looks like in this case?
▶ What the effect of 𝛾? (demo)

42
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The Choice of Kernels

▶ The choice of 𝐾(𝒙 , 𝒙′) can be arbitrary, as long as the existence of
Φ(·) is guaranteed
▶ For many cases, Φ(·) cannot be found explicitly

▶ Alternatively, we only need to make sure 𝐾(𝒙 , 𝒙′) is positive
definite symmetric (PDS)
▶ A kernel 𝐾 is PDS if for any {𝒙1 , . . . , 𝒙𝑚} the matrix K is symmetric

positive semi-definite

K = [𝐾(𝒙𝑖 , 𝒙 𝑗)]𝑖 , 𝑗 ∈ ℝ𝑚×𝑚 (62)

▶ A symmetric positive semi-definite matrix is defined as

𝒄TK𝒄 ≥ 0 (63)

[Mohri et al., 2018, Section 6.1 - 6.2]
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