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Real-world Classification Problem

Image classification

14M images, 20K categories
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Real-world Classification Problem (II)

Sentiment classification

192K businesses, 6.6M user reviews
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Questions

Q1 What is the first example of machine learning applications that
you can think of?

Q2 What are the challenges of building machine learning models for
that application?
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Objective

The objective of this lecture is

to talk about the essence of machine learning without getting
distracted by some real-world constraints.
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A Toy Example



Question

Our very first machine learning example:
Based on the following observations, try to find out the shape/size of the area
where the positive examples come from, so we can make the best predictions
on future observations

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

We have to make certain assumptions, otherwise there is no way to
answer this question.
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Hypotheses

Given these data points, answer the following two questions:

1. Which shape is the underlying
distribution of red points?
▶ A triangle
▶ A rectangle
▶ A circle
▶ A shape that we (or

probably just me) cannot
describe

2. What is the size of that shape?

𝑥1

𝑥2

+

+

+
+

- -

-
-

-
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Basic Concepts (I)

Domain set or input space X: the set of all possible examples

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

▶ In this case, X= ℝ2

▶ Each point 𝒙 in X, 𝒙 ∈ X, is called one example or instance.
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Basic Concepts (II)

Label set or output space Y: the set of all possible labels

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

▶ In this case, Y ∈ {+,−}
▶ In this course, we often restrict the label set to be a two-element

set, such as {+1,−1}
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Basic Concept (III)

Training set 𝑆: a finite sequence of pairs in X× Y, represented as
{(𝒙1 , 𝑦1), (𝒙2 , 𝑦2), . . . , (𝒙𝑚 , 𝑦𝑚)} with size 𝑚

𝑥1

𝑥2

+

+

+
+

- -

-
-

-
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Basic Concept: Hypothesis Space

▶ Hypothesis class or hypothesis space H: a set of functions that
map instances to labels

▶ Each element ℎ in this hypothesis class is called a hypothesis

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

Figure: Two hypotheses from the Circle class.
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Basic Concept: Hypothesis Space (Cont.)

If we represent a hypothesis by its parameter value, then each
hypothesis corresponds one point in the hypothesis space.

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

Center 𝑥1

Center 𝑥2

radius

Figure: Visualizing the Circle hypothesis class.
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Basic Concept: Machine Learners

▶ A (machine) learner is an algorithm 𝐴 that can find an optimal
hypothesis from Hbased on the training set 𝑆

▶ This optimal hypothesis is represented as 𝐴(𝑆)

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

Center 𝑥1

Center 𝑥2

radius

▶ A hypothesis space H is learnable if such an algorithm 𝐴 exists1

1A precise definition will be provided later in this lecture.
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Why a Toy Problem?

With a toy problem, we can have the following conveniences that we
usually do not have with real-world problem,

▶ Do not need data pre-processing
▶ Do not need feature engineering
▶ Make some unrealistic assumptions, e.g.,

▶ Assume we know the underlying data distribution
▶ Assume we know the optimal classifier given the data distribution
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True Classification Error



Basic Concepts: Summary

▶ Domain set X
▶ Label set Y
▶ Training data 𝑆: the

observations
▶ Hypothesis class H

▶ rectangle class
▶ A learner 𝐴

▶ an algorithm that finds an
optimal hypothesis

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

17



Data Generation Process

An idealized process to illustrate the relations among domain set X,
label set Y, and the training set 𝑆

1. the probability distribution D over the domain set X

2. sample an instance 𝒙 ∈ Xaccording to D

3. annotate it using the labeling function 𝑓 as 𝑦 = 𝑓 (𝒙)

−6 −4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2

18



Example

Assume the data distribution D over the domain set X is defined as

D : 𝑝(𝑥) = 1
2N(𝑥; 2, 1)︸       ︷︷       ︸
component 1

+ 1
2N(𝑥;−2, 1)︸         ︷︷         ︸

component 2

(1)

The specific data generation process: for each data point

1. Randomly select one out of two Gaussian components with
probability 50%

2. Sample 𝑥 from that Gaussian component
3. Label 𝑥 based on which component was selected at step 1

▶ Component 1: positive
▶ Component 2: negative

19



Example

Assume the data distribution D over the domain set X is defined as

D : 𝑝(𝑥) = 1
2N(𝑥; 2, 1)︸       ︷︷       ︸
component 1

+ 1
2N(𝑥;−2, 1)︸         ︷︷         ︸

component 2

(1)

The specific data generation process: for each data point

1. Randomly select one out of two Gaussian components with
probability 50%

2. Sample 𝑥 from that Gaussian component
3. Label 𝑥 based on which component was selected at step 1

▶ Component 1: positive
▶ Component 2: negative

19



Example

Assume the data distribution D over the domain set X is defined as

D : 𝑝(𝑥) = 1
2N(𝑥; 2, 1)︸       ︷︷       ︸
component 1

+ 1
2N(𝑥;−2, 1)︸         ︷︷         ︸

component 2

(1)

The specific data generation process: for each data point

1. Randomly select one out of two Gaussian components with
probability 50%

2. Sample 𝑥 from that Gaussian component

3. Label 𝑥 based on which component was selected at step 1
▶ Component 1: positive
▶ Component 2: negative

19



Example

Assume the data distribution D over the domain set X is defined as

D : 𝑝(𝑥) = 1
2N(𝑥; 2, 1)︸       ︷︷       ︸
component 1

+ 1
2N(𝑥;−2, 1)︸         ︷︷         ︸

component 2

(1)

The specific data generation process: for each data point

1. Randomly select one out of two Gaussian components with
probability 50%

2. Sample 𝑥 from that Gaussian component
3. Label 𝑥 based on which component was selected at step 1

▶ Component 1: positive
▶ Component 2: negative

19



Example (Cont.)

Sampled data distribution

True distribution

−6 −4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2

In this section, we will talk about how to measure the classification
error if we know the true data distribution.
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Classification Error with True Data Distribution

The classification error will happen when the hypothesis ℎ does not
predict the correct label on a randomly generated instance 𝒙

−6 −4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2
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Example

Re-formulate the data generation process in probabilistic language

𝑝(𝑦 = +1) = 𝑝(𝑦 = −1) = 1
2

𝑝(𝑥 | 𝑦 = +1) = N(𝑥; 2, 1)
𝑝(𝑥 | 𝑦 = −1) = N(𝑥;−2, 1)

(2)

−6 −4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2
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The Bayes Predictor

If ℎ is defined as

ℎ(𝑥) =
{
+1 𝑝(+1 | 𝑥) ≥ 𝑝(−1 | 𝑥)
−1 otherwise

(3)

then what is the classification error?

−6 −4 −2 0 2 4 6

5 · 10−2

0.1

0.15

0.2

The Bayes predictor: the best predictor if we know the true data
distribution (more detail will be discussed later)
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True Error

▶ The true error of a hypothesis ℎ as the probability that it does not
predict the correct label on a randomly generated instance 𝒙
following distribution D

▶ Definition
𝐿D, 𝑓 (ℎ) = ℙ𝒙∼D[ℎ(𝒙) ≠ 𝑓 (𝒙)] (4)

▶ 𝒙 ∼ D: an instance generated following the distribution D

▶ ℎ(𝒙) ≠ 𝑓 (𝒙): prediction from hypothesis ℎ does not match the
labeling function output

▶ 𝐿D, 𝑓 (ℎ): the error of ℎ is measured with respect to D and 𝑓
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Other Names

Definition:
𝐿D, 𝑓 (ℎ) = ℙ𝒙∼D[ℎ(𝒙) ≠ 𝑓 (𝒙)] (5)

Other names (used interchangably):

▶ the generalization error
▶ the true risk
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Comments

Recall the definition of true risk with the data distribution D and the
labeling function 𝑓

𝐿D, 𝑓 (ℎ) = ℙ𝒙∼D[ℎ(𝒙) ≠ 𝑓 (𝒙)] (6)

It is impossible to compute 𝐿D, 𝑓 (ℎ) in practice, since we do not know

▶ the distribution of data generation D

▶ the labeling function 𝑓

Alternative option: Empirical Risk

26



Empirical Risk Minimization



Empirical Risk

The definition of the empirical risk (or, empirical error, training
error):

𝐿𝑆(ℎ) =
|{𝑖 ∈ [𝑚] : ℎ(𝒙𝑖) ≠ 𝑦𝑖}|

𝑚
(7)

Notations

▶ [𝑚] = {1, 2, . . . , 𝑚} where 𝑚 is the total number of instances in 𝑆

▶ {𝑖 ∈ [𝑚] : ℎ(𝒙𝑖) ≠ 𝑦𝑖}: the set of instances that ℎ predicts wrong
▶ |{𝑖 ∈ [𝑚] : ℎ(𝒙𝑖) ≠ 𝑦𝑖}|: the size of the set
▶ 𝐿𝑆(ℎ) defines with respect to the set 𝑆
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Example

The empirical risk of a hypothesis ℎ is defined on the training set 𝑆:

𝐿𝑆(ℎ) =
|{𝑖 ∈ [𝑚] : ℎ(𝒙𝑖) ≠ 𝑦𝑖}|

𝑚
(8)

Figure: 1K examples generated with the previous process.
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Empirical Risk Minimization: Definition

Empirical Risk Minimization (ERM): given the training set 𝑆 and the
hypothesis class H

ℎ ∈ argmin
ℎ∈H

𝐿𝑆(ℎ) (9)

▶ argmin stands for the set of hypotheses in H that achieve the
minimum value of 𝐿𝑆(ℎ) over H

▶ In general, there is always at least one hypothesis that makes
𝐿𝑆(ℎ) = 0 with an unrealistically large H
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Empirical Risk Minimization: Limitation

For example, with an unrealistically large hypothesis class H, we can
always minimize the empirical error and make it zero

ℎ𝑆(𝒙) =
{

𝑦𝑖 if (𝒙 = 𝒙𝑖) ∧ (𝒙𝑖 ∈ 𝑆)
unknown otherwise

(10)

no matter how many instances in 𝑆

𝑥1

𝑥2

+

+

+
+

- -

-
-

-
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Overfitting

Although this is just an extreme case, it illustrates an important
phenomenon, called overfitting

𝑥1

𝑥2

+

+

+
+

- -

-
-

-

▶ The performance on the training set is excellent; but on the whole
distribution was very poor

▶ Continue our discussion on lecture 6: model selection and
validation
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Inductive Bias

“A learner that makes no a priori assumptions regarding the identity of the
target concept2 has no rational basis for classifying any unseen instances.”

[Mitchell, 1997, Page 42]

2labeling function, in the context of our discussion
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Finite Hypothesis Classes



A Learning Problem

Assume we know the following information:

▶ Domain set X= [0, 1]
▶ Distribution D: the uniform distribution over X
▶ Label set Y= {−1,+1}
▶ Labeling function 𝑓

𝑓 (𝑥) =
{
−1 0 ≤ 𝑥 < 𝑏

+1 𝑏 ≤ 𝑥 ≤ 1
(11)

with 𝑏 is unknown

The learning problem is defined as

▶ Given a set of observations 𝑆 = {(𝑥1 , 𝑦1), . . . , (𝑥𝑚 , 𝑦𝑚)}, is there a
learning algorithm that can find a good approximation of 𝑏?
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A Training Set 𝑆

Consider the following training sets, each of them contains eight data
points, can a learning algorithm find the dividing point?

Training set 𝑆

[Code]
36
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Finite Hypothesis Class

▶ The finite hypothesis class of dividing points

H𝑓 = {ℎ𝑖 : 𝑖 ∈ [10]} (12)

with each ℎ𝑖 defined as

ℎ𝑖(𝑥) =
{
−1 0 ≤ 𝑥 < 𝑖

10
+1 𝑖

10 ≤ 𝑥 ≤ 1
(13)
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The Realizability Assumption

The Realizability Assumption:

There exists ℎ∗ ∈ H such that 𝐿D, 𝑓 (ℎ∗) = 0

[Shalev-Shwartz and Ben-David, 2014, Definition 2.1]
Comments

▶ 𝐿D, 𝑓 indicates this is the true error
▶ this assumption implies 𝐿𝑆(ℎ𝑆) = 0,

where 𝐿𝑠 is the empirical risk based on the training set 𝑆 and ℎ𝑆 is the
hypothesis found by minimizing the empirical risk based on 𝑆
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A Learning Algorithm

▶ A learner: the brute force algorithm

▶ try the hypotheses one by one and find the best
▶ time complexity O(|H𝑓 |)

▶ better algorithms exist, such as binary search algorithm
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Nonrepresentative Training Set

▶ Consider the following training set (no negative example)3

▶ Introduce 𝛿 ∈ (0, 1) to capture nonrepresentative cases. With
probability (1 − 𝛿), we have representative cases
▶ Loosely speaking, in the running example, at least 𝑆 has both

positive and negative instances

▶ (1 − 𝛿) is called confidence parameter

3Run the demo code about ten times, you may be able to see this happens once.
40



Nonperfect Predictors

Consider the following training instances

▶ Follow the realizability assumption, there exists 𝐿𝑆(ℎ𝑆) = 0
▶ But there is no guarantee that 𝐿(D, 𝑓 )(ℎ𝑆) = 0
▶ Relax the constraint as

𝐿(D, 𝑓 )(ℎ𝑆) ≤ 𝜖 (14)

where 𝜖 is called accuracy parameter
41



Sample Complexity

▶ In the running example, we use 𝑚 = 8
▶ Intuitively, if we increase the size of 𝑆, we will have a better

chance to identify the labeling function 𝑓 . For example, when
𝑚 = 691
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Summary of the Issues

1. Nonrepresentative training Set
▶ Missing critical information about the data distribution D

2. Nonperfect predictors
▶ 𝐿𝑆(ℎ𝑆) = 0, but 𝐿D, 𝑓 (ℎ𝑆) ≠ 0

3. Mismatch of the hypothesis space
▶ The realizability assumption is unrealistic for practical applications

The first two issues are considered in the PAC learning model, and
the last issue is considered in the agnostic PAC learning model.
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PAC Learning



The Realization Assumption

Let keep this assumption in this section

There exists ℎ∗ ∈ H such that 𝐿D, 𝑓 (ℎ∗) = 0

Comments

▶ 𝐿D, 𝑓 (ℎ∗) is the true error

▶ It implies, with probability 1, every ERM hypothesis 𝐿𝑆(ℎ𝑆) = 0

▶ It is a strong assumption for theoretical analysis purpose. In
practice, we do not have a such guarantee
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A Oversimplified Definition of PAC Learnability

A hypothesis class H is PAC learnable if there exists a learning
algorithm with the following property:

▶ for every distribution D over Xand
▶ for every labeling function 𝑓 : X→ {0, 1}

with enough training examples, the algorithm returns a hypothesis ℎ

such that with a large probability that

𝐿D, 𝑓 (ℎ) (15)

is arbitrarily small.
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Distribution D over X

Consider the distribution over [0, 1]

▶ Uniform distribution

▶ Beta distributions

𝑝(𝑥; 𝛼, 𝛽) = 1
𝐵(𝛼, 𝛽) 𝑥

𝛼−1(1 − 𝑥)𝛽−1 (16)

▶ Many other distributions

We expect that, if there exists a learning algorithm 𝐴, it should work
with all kinds of different distributions.
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Labeling Function 𝑓 : X→ {0, 1}

For the problem of finding the dividing point, the labeling function is
defined as

𝑓 (𝑥) =
{
−1 0 ≤ 𝑥 < 𝑏

+1 𝑏 ≤ 𝑥 ≤ 1
(17)

▶ 𝑏 can be any number here, as long as it follows the realization
assumption. In other words, the labeling function is in the
hypothesis space 𝑓 ∈ H

▶ We will discuss the scenario of 𝑓 ∉ H in next section
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A Simplified Definition of PAC Learnability

A hypothesis class H is PAC learnable if there exists a learning
algorithm with the following property:

▶ for every distribution D over X
▶ for every labeling function 𝑓 : X→ {0, 1}, and
▶ for every 𝜖, 𝛿 ∈ (0, 1)

with enough training examples, the algorithm returns a hypothesis ℎ

such that, with probability of at least 1 − 𝛿,

𝐿D, 𝑓 (ℎ) ≤ 𝜖 (18)
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Accuracy Parameter 𝜖

The accuracy parameter 𝜖 determines how far the output classifier
can be from the optimal one

A Simplified Definition
. . .

𝐿D, 𝑓 (ℎ) ≤ 𝜖 (19)

Approximately Correct
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Confidence Parameter 𝛿

The confidence parameter 𝛿 indicates how likely the classifier is to
meet the accuracy requirement

A Simplified Definition
. . . the algorithm returns a hypothesis ℎ such that, with probability
of at least 1 − 𝛿 (over the choice of the examples),

𝐿(D, 𝑓 )(ℎ) ≤ 𝜖 (20)

Probably Approximately Correct (PAC)
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Is It Necessary to Have Both Parameters?

Cen we remove either 𝜖 or 𝛿?

▶ We need 𝛿
▶ Because the training set is randomly generated, which can be

non-representative

▶ We need 𝜖
▶ Because we can only finite number of training examples, even

though the training set is representative
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PAC Learnability

A hypothesis class H is PAC learnable if there exist a function
𝑚H(𝜖, 𝛿) : (0, 1)2 → ℕ and a learning algorithm with the following
property:

▶ for every distribution D over X,
▶ for every labeling function 𝑓 : X→ {0, 1}, and
▶ for every 𝜖, 𝛿 ∈ (0, 1),

if the realizable assumption holds wrt H,D, 𝑓 , then when running the
learning algorithm on 𝑚 ≥ 𝑚H(𝜖, 𝛿) i.i.d. examples generated by D

and labeled by 𝑓 , the algorithm returns a hypothesis ℎ such that, with
probability of at least 1 − 𝛿,

𝐿(D, 𝑓 )(ℎ) ≤ 𝜖 (21)
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Sample Complexity

▶ Sample complexity function: a function of 𝜖 and 𝛿

𝑚H(𝜖, 𝛿) : (0, 1)2 → ℕ (22)

▶ How many examples are required to guarantee a probably
approximately correct solution
▶ many different options

▶ To be precise, 𝑚H(𝜖, 𝛿) is defined to the minimal function that
satisfies the requirements of PAC learning with 𝜖 and 𝛿
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▶ How many examples are required to guarantee a probably
approximately correct solution
▶ many different options

▶ To be precise, 𝑚H(𝜖, 𝛿) is defined to the minimal function that
satisfies the requirements of PAC learning with 𝜖 and 𝛿
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Finite Hypothesis Class

Let Hbe a finite hypothesis class. Let 𝛿 ∈ (0, 1) and 𝜖 > 0 and let 𝑚 be
an integer that satisfies

𝑚 ≥
log(|H|/𝛿)

𝜖
(23)

Then, for any labeling function 𝑓 , and for any distribution D, for
which the realizability assumption holds, with probability 1 − 𝛿 over
the choice of an i.i.d. sample 𝑆 of size 𝑚, we have that for every ERM
hypothesis, ℎ𝑆, it holds that

𝐿(D, 𝑓 )(ℎ𝑆) ≤ 𝜖. (24)

[Shalev-Shwartz and Ben-David, 2014, Corollary 2.3]
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Example: Finding the Dividing Points

The sample complexity of finite hypothesis space

𝑚 ≥
log(|H|/𝛿)

𝜖
(25)

▶ The size of the hypothesis space: |H| = 100
▶ Confidence parameter: 𝛿 = 0.1
▶ Accuracy parameter: 𝜖 = 0.01

𝑚0 =
log(|H|/𝛿)

𝜖
≈ 691
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Agnostic PAC Learning



Reconsider the Realizability Assumption

The Realizability Assumption
There exists ℎ∗ ∈ H such that

𝐿(D, 𝑓 )(ℎ∗) = ℙ𝑥∼D[ℎ∗(𝑥) ≠ 𝑓 (𝑥)] = 0 (26)

Comment: this is a strong assumption

▶ Do we really know 𝑓 ?
▶ Does equation 26 also holds?
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Example: Unrealistic assumption

Image classification: what is the labeling function of all the images?

14M images, 20K categories
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Notation Revision

▶ Remove the labeling function 𝑓 from the framework of PAC
learning

▶ Modify the definitions
▶ Revise D as a joint distribution over X× Y

▶ Revise the true risk of a prediction rule ℎ to be

𝐿D(ℎ) = ℙ(𝑥,𝑦)∼D[ℎ(𝑥) ≠ 𝑦] (27)

▶ Revise the empirical risk remains the same

𝐿𝑆(ℎ) =
|{𝑖 ∈ [𝑚] : ℎ(𝑥𝑖) ≠ 𝑦𝑖}|

𝑚
(28)

▶ No fundamental changes, just for the convenience of notations
▶ One more question that we need to answer: what the best

hypothesis in H can do?
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Agnostic PAC Learnability

A hypothesis class H is agnostic PAC learnable if there exist a
function 𝑚H : (0, 1)2 → ℕ and a learning algorithm with the
following property:

▶ for every distribution D over X× {−1,+1} and
▶ for every 𝜖, 𝛿 ∈ (0, 1),

when running the learning algorithm on 𝑚 ≥ 𝑚H(𝜖, 𝛿) i.i.d. examples
generated by D, the algorithm returns a hypothesis ℎ such that, with
probability of at least 1 − 𝛿,

𝐿D(ℎ) ≤ min
ℎ′∈H

𝐿D(ℎ′) + 𝜖 (29)
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Comments

▶ In general, we have

𝐿D(ℎ) ≤ min
ℎ′∈H

𝐿D(ℎ′) + 𝜖 (30)

▶ If the realizability assumption holds, by the definition we have

min
ℎ′∈H

𝐿D(ℎ′) = 0 (31)

and then,

𝐿D(ℎ) ≤ min
ℎ′∈H

𝐿D(ℎ′) + 𝜖

= 𝜖

which is a special case of agnostic PAC learning
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The Bayes Optimal Predictor

If we know the underlying data distribution D, what will be the best
hypothesis in agnostic PAC learning?

▶ The Bayes optimal predictor: given a probability distribution D

over X× {−1,+1}, the predictor is defined as

𝑓D(𝑥) =
{
+1 if ℙ[𝑦 = 1|𝑥] ≥ 1

2
−1 otherwise

(32)

▶ No other predictor can do better: for any predictor ℎ

𝐿D( 𝑓D) ≤ 𝐿D(ℎ) (33)

▶ Exercise: The Bayes predictor defined in Eq. 32 is optimal
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Example

Consider the following data distribution

D=
1
2B(𝑥; 4, 1)︸       ︷︷       ︸

𝑓 (𝑥)=+1

+ 1
2B(𝑥, 1, 4)︸       ︷︷       ︸

𝑓 (𝑥)=−1

(34)

where B(𝑥, 𝛼, 𝛽) is a Beta distribution with parameters 𝛼 and 𝛽

The true error of the Bayes predictor is 𝐿D( 𝑓D) = 0.0625
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Example (Cont.)

With 2K training examples, we can find ℎ𝑆 by minimizing the
empirical risk 𝐿𝑆(ℎ)

▶ the empirical risk of ℎ𝑆, 𝐿𝑆(ℎ𝑆) = 0.0535 (threshold 𝑏 = 0.4996)
▶ the true risk of ℎ𝑆, 𝐿D(ℎ𝑆) = 0.06250018
▶ Reference: the true error of the Bayes predictor is 𝐿D( 𝑓D) = 0.0625
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