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> CS 2150 or CS 3100 with a grade of C- or better
> Linear Algebra
> Math 3350 or APMA 3080 or equivalent
> Probability and Statistics
> APMA 3100, APMA 3110, MATH 3100, or equivalent



The survey results (by Jan. 18, 12 PM)

Attempts: 83 out of 83

What is the purpose of taking this course?

Please select the answers that are aligned with your expectation.

My research needs machine learning

To learn the basic idea of machine learning

To have a machine learning course on my transcript

To learn machine learning tools, e.g., PyTorch, Sklearn
To learn how to use machine learning solving problems
Machine learning is a hot topic

No Answer

6 respondents

65 respondents
26 respondents
61 respondents
64 respondents
52 respondents

1 respondent

7%
78%
31%
73k
7 B2
63%
1%




This course will cover the basic materials on the following topics

1. Introduction to learning theory

N

Linear classification and regression
Model selection and validation
Boosting

Optimization methods

Neural networks (e.g., CNN, RNN, Auto-encoders, Transformers)
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Ouitline (Il)

The following topics will not be the emphasis of this course

> Statistical modeling

> e.g., parameter estimation, Bayesian statistics, graphical models

> Machine learning engineering

> e.g., how to implement a classifier from end to end
> although, we will provide some demo code for illustration
purposes

> Advanced topics in machine learning

> e.g., reinforcement learning, active learning, semi-supervised
learning, online learning



» Shalev-Shwartz and Ben-David. Understanding Machine Learning:
From Theory to Algorithms. 2014
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Reference Books

For students looking for additional reading materials

> Bishop. Pattern Recognition and Machine Learning. 2006
» Murphy. Machine Learning: A Probabilistic Perspective. 2012

» Mohri, Rostamizadeh, and Talwalkar. Foundations of Machine
Learning. 2nd Edition. 2018

» Hastie, Tibshirani, and Friedman. The Elements of Statistical
Learning (2nd Edition). 2009
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Homework and Grading Policy

» Homeworks (70%)

> Five homework assignments, 14 points each

> In-class Quiz (10%)
> For the instructor to get a better understanding of students’
feedback on the lectures
> 1 point each

> Final project (20%)
> There are some pre-defined problems with datasets provided
> Students will team up (3 — 4 students per group) to solve one
problem



Grading Policy

The final grade is threshold-based instead of percentage-based

Pointrange  Letter grade

[99 100] A+
[94 99) A
[90 94) A-
[88 90) B+
[83 88) B
[80 83) B-
[74 80) C+
[67 74) Cc

[60 67) C-



Late Penalty

> Homework submission will be accepted up to 72 hours late, with
20% deduction per 24 hours on the points as a penalty

> Submission will not be accepted if more than 72 hours late

> Make sure not submit wrong files

> it is students responsbility to make sure they submit the right and
complete files for each homework

> It is usually better if students just turn in what they have in time
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Violation of the Honor Code

Plagiarism, examples are

> in a homework submission, copying answers from others directly
or some minor changes

> in a report, copying texts from a published paper (including,
some minor changes)

> in a code, using someone else’s functions/implementations
without acknowledging the contribution

11



Webpages

> Course webpage
http://yangfengji.net/uva-ml-undergrad/

which contains all the information you need about this course.

» Canvas

> For homework releasing and grading
» For announcement, online QA, discussion, etc.

12


http://yangfengji.net/uva-ml-undergrad/

Why Taking this Course?




Machine Learning Courses

MIT Professional Education - 12 Week Al & ML Program - Earn Certificate of
Completion

MIT Professional Education - 12 Week Data Science Course

Stanford CS229: Machine Learning Full Course taught by Andrew Ng |
Autumn 2018
Stanford Oniine ©

Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018) - 111520
Stanford C229: Machine Learning - Linear Regression and Gradient Descent | Lectur.. - 1:18:17

VIEW FULL PLAYLIST

Machine Learning Course for Beginners
gy (AU
Machine Learning nuueyssuc st ssoeteani —
-Course BBTE) Cous rroicion| Fudamentals of Machine Lering  Supenised Leamingad. 22 hirs

] Machine Learning Full Course - Learn Machine Learning 10 Hours | Machine




An Example Course

Building logistic regression classifier

» YouTube

Soton House P reciction 1. X |
c O © localhost e "
Jupyter Boston House Price Prediction Project Last Checkpoint: an hour ago (unsaved changes)
sert Keme Help [ Python3 O

Edt  View

% @ B 4 ¢ MHRin B C » v @ Validate
print(X_test.shape)

print(y_train. shape)

print(y_test.shape)

(404, 13)

(102, 13)

(a0a,)

(e2,)

from sklearn. Linear_model import LinearRegression

1r = LinearRegression()
1r. Fit(X_train, y_train

t[19]: LinearRegression()

n [20]: predictions = lr.predict(X_test)

print(*Actual value of the house:- *, y_test[e])
print("Model Predicted Value:- ", predictions[e])

Actual value of the house:- 3.2188758248682006
i jalue:-  3.366894979996961
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Another Example

Building a GPT model with Transformer

Let's build GPT: from scratch, in code, spelled out.

[Cpremm——— Ee—— E

co & gpt-dev.ipynb B Comment 2% Share £ O

File Edit View Insert Runtime Tools Help Allchanges saved

Ra ¢
+Code + Text ML - Fedting | A
o # idx and targets are both (B,T) tensor of integers rveonBEdE
a logits = self. token_embedding table(idx) # (B,T,C)
B, T, C = logits.shape

" logits
targets
o loss =

ogits.view(BsT, C)
targets. view(B«T)
~cross_entropy(logits, targets)

return logits, loss

Segfusrece:slseu iy Joer et ioker

e i o

Gr _ in range(max_new_tokens) :
# get the predictions
logits, loss = self(idx)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, din=—1) # (8, C)
# sample from the distribution
idx_next = torch.multingnial(probs, nun_samples=1) # (8, 1)
# append sanpled index to the running sequence
idx = torch.cat((idx, idx_next), din=1) # (B, T+1)

return 1dx

nigranlanguageﬁuﬂel(vocab size)
\aqns, Toss = m(xb, yb)
print(logits. shape)

print(loss)

Backwarde>) Exit full screen (f)

O @B #° 3
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What is Missing?

» YouTube

Boston House PricePrediction

©

o

x +
© localnost8885/n " .

Jupyter Boston House Price Prediction Project Last Checkpoint an hour ago (unsaved changes)

Keme
B 4 ¥ MR B C » v = Validate
print(X_test. shape)
print(y_train. shape)

print(y_test. shape)

(404, 13)
(102, 13)

from sklearn. linear_model import LinearRegression
1r = LinearRegression()
1r.Fit(x_train, y_train

LinearRegression()

predictions = 1r.predict(X_test)
print(*Actual value of the house:- *, y_test[e])
print("Model Predicted Value:- ", predictions[a])
Actual value of the house:- 3.2188758248682006

icted Value:- 3.356894979996961
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What is this?

sklearn. linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=12' * dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver=1bfgs’, max_iter=100, multi_class="auto, verbose=0,

warm_start=False, n_jobs=None, I1_ratio=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OVR) scheme if the ‘multi_class’ option is set to ‘ovr’, and uses

the cross-entropy loss if the ‘multi_class’ option is set to ‘multinomial’. (Currently the ‘multinomial’ option is supported only by the
‘Ibfgs’, ‘sag’, ‘saga’ and ‘newton-cg’ solvers.)

This class it i logistic

using the ‘liblinear’ library, ‘newton-cg/, ‘sag’, ‘saga’ and ‘Ibfgs’ solvers. Note
that regularization is applied by default. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices
containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The ‘newton-cg’, ‘sag’, and ‘Ibfgs’ solvers support only L2

with primal ion, or no ization. The ‘liblinear’
solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only
supported by the ‘saga’ solver.

» What's the definition of this classifier?
> What if it does not work?

» What are its limitations?
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What is this?

sklearn. linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=12' * dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver=1bfgs’, max_iter=100, multi_class="auto, verbose=0,

warm_start=False, n_jobs=None, I1_ratio=None) [source]

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OVR) scheme if the ‘multi_class’ option is set to ‘ovr’, and uses

the cross-entropy loss if the ‘multi_class’ option is set to ‘multinomial’. (Currently the ‘multinomial’ option is supported only by the
‘Ibfgs’, ‘sag’, ‘saga’ and ‘newton-cg’ solvers.)

This class it i logistic

using the ‘liblinear’ library, ‘newton-cg/, ‘sag’, ‘saga’ and ‘Ibfgs’ solvers. Note
that regularization is applied by default. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices
containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The ‘newton-cg’, ‘sag’, and ‘Ibfgs’ solvers support only L2

with primal ion, or no ization. The ‘liblinear’
solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only
supported by the ‘saga’ solver.

» What's the definition of this classifier?
> What if it does not work?

» What are its limitations?

In fact, if you explain how these parameters work and their effects, you can
skip at least one third of the class lectures.
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Mathematical/Statistical Background

To understanding machine learning, we need some mathematical and
statistical knowledge

Attempts: 84 out of 84

The course materials also contain a large amount of mathematical/statistical stuff.

Please select the following answer that gives the closest description of how comfortable when you read
mathematics.

No way for me to read any mathematics 1 respondent 1%

Not a fan of mathematics, but | can handle it 31 respondents 37 %

v

I will try to avoid it, unless | have to 9 respondents 1% -

| feel comfortable of reading mathematics 43 respondents 51%

19



Now, let’s have some fun!

Warning: you will see lots of mathematical notations.

20



Basic Linear Algebra




Linear Equations

Consider the following system of equations

4x1 - 5X2 =-13

—2x1+3x, =9

(1)

In matrix notation, it can be written as a more compact from

Ax =0 (2)

S N B Y A I B

with

22



Basic Notations

> A € R™": a matrix with m rows and n columns
> The element on the i-th row and the j-th column is denoted as 4; ;

> x € R": a vector with n entries. By convention, an n-dimensional
vector is often thought of as matrix with n rows and 1 column,
known as a column vector.

» The i-th element is denoted as x;

23



> A norm of a vector ||x|| is informally a measure of the “length” of
the vector.
> Formally, a norm is any function f : R" — R that satisfies four
properties
1. f(x) > 0for any x € R"
2. f(x)=0ifand only if x =0
3. f(ax) =|a|- f(x) for any x € R"
4. fx+y) < f(x)+ f(y), forany x,y € R"

24



The ¢, norm of a vector x € R" is defined as

n

lxlla = 4| > 2 4)

i=1

& Question for Homework: prove f, norm satisfies all four properties

25



The ¢; norm of a vector x € R" is defined as

el = 1l 5)
i=1

26



For a two-dimensional vector x = (x1, x2) € R?, which of the
following plot is ||x|[; = 1?

X2

DA T
SEE

(@) (b) (©

27



The dot product of x, y € R" is defined as

n

(x,yy=xTy = in]/i (6)

i=1
where x' is the transpose of x.
> x5 = (x, x)
> Ifx=(0,0,..., 1 ,...,0),then{x,y)=y;
——

Xi

> If x is an unit vector (||x|2 = 1), then (x, y) is the projection of y

on the direction of x
i: y

X

28



Cauchy-Schwarz Inequality

Forall x,y € R"

1<, 1 < [lxll2llyll2 (7)
with equality if and only if x = ay witha € R
Proof:

Letx = |x” and 7 = then % and 7 are both unit vectors.

v
Tyll2”
Based on the geometric interpretation on the previous slide, we have

x,y <1 (8)

if and only if ¥ = 7.

29



Matrix-Vector Multiplication

Given a matrix A and a vector x, their multiplication is equivalent to

performing a linear transformation on x

Ax ©)

For example, consider the following matrix

05 0
A:[ : 2] (10)

and three vectors

> x] =[1,2]
> x; =[2,4]
> x; =[3,6]

30



Matrix-Vector Multiplication

Given a matrix A and a vector x, their multiplication is equivalent to

performing a linear transformation on x

Ax ©)

For example, consider the following matrix

05 0
A:[ : 2] (10)

and three vectors

> x] =[1,2]
> x; =[2,4]
> x; =[3,6]

w» This is also what the function torch.nn.Linear means
30



Two Special Matrices

> The identity matrix, denoted as I € R"*"], is a square matrix with
ones on the diagonal and zeros everywhere else.

I= (11)

31



Two Special Matrices

> The identity matrix, denoted as I € R"*"], is a square matrix with
ones on the diagonal and zeros everywhere else.

I= (11)

> A diagonal matrix, denoted as D = diag(dy, dz, ..., d,), isa
matrix where all non-diagonal elements are o.

di
D= (12)

31



Inverse

The inverse of a square matrix A € R™" is denoted as A~!, which is
the unique matrix such that

ATTA=1=A4A" (13)

> Non-square matrices do not have inverses (by definition)
> Not all square matrices are invertible

> The solution of the linear equations in Eq. (1) is x = A~'b

32



Inverse (1)

> In matrix-vector multiplication, an inverse matrix A~ will
reverse the linear transformation performed by A

AlAx =x (14)

33



Inverse (Il)

> In matrix-vector multiplication, an inverse matrix A~ will
reverse the linear transformation performed by A

AlAx =x (14)

» When a matrix A is not invertible, it means its linear
transformation is not reversible

a=lo o] (15)

33



Orthogonal Matrices

> Two vectors x,y € R" are orthogonal if (x,y) =0

y

34



Orthogonal Matrices

> Two vectors x,y € R" are orthogonal if (x,y) =0

y

X

> A square matrix U € R™" is orthogonal, if all its columns are
orthogonal to each other and normalized (orthonormal)

(i, uj) =0, lluill = 1, [Jujl| =1 (16)

fori,je[n]andi #j
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Orthogonal Matrices

> Two vectors x,y € R" are orthogonal if (x,y) =0

y

X

> A square matrix U € R™" is orthogonal, if all its columns are
orthogonal to each other and normalized (orthonormal)

(ui, uj) =0, lluill =1, |||l = 1 (16)
fori,je[n]andi #j

> Furthermore, UTU = I = UU', which further implies U™! = UT

34



A Special Case

Consider a matrix A as
0 1
A=
[ 10 ] (17)

For any x" = [x1, x2], we have

Aln -

|
—

2 } (18)

X1

35



A Special Case

Consider a matrix A as

0 1
A=
[ 10 ] (17)
For any x" = [x1, x2], we have
L
X2 X1

The is a reflection operation. Operations like this are popularly used
in computer graphics.

35



Symmetric Matrices

A symmetric matrix A € R"*" is defined as
AT=A (19)

or, in other words,
ajj=aj; Vi je[n] (20)

Comments

> The identity matrix I is symmetric

> A diagonal matrix is symmetric
xTAy (21)

gives each dimension a different weight (importance) when
computing the similarity between x and y

36



Eigen Decomposition

Every symmetric matrix A can be decomposed as

A =UAUT (22)

> A= as a diagonal matrix
An
> Q is an orthogonal matrix

37



Eigen Decomposition

Every symmetric matrix A can be decomposed as

A =UAUT (22)

> A= as a diagonal matrix
An
> Q is an orthogonal matrix

> Consider the similarity measurement

x"Ay =x"UAU"y = (UTx)'AUTy (23)
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Eigen Decomposition

Every symmetric matrix A can be decomposed as

A =UAUT (22)

> A= as a diagonal matrix
An
> Q is an orthogonal matrix

> Consider the similarity measurement

x"Ay =x"UAU"y = (UTx)'AUTy (23)

Qs Question for Homework: if a symmetric matrix A is invertible, show
A = UAT'UT with A™! = diag(+, ..., 1)
37



Symmetric Positive Semidefinite Matrices

A symmetric matrix P € R™" is positive semidefinite if and only if
x"Px >0 (24)

for all x € R".

38



Symmetric Positive Semidefinite Matrices

A symmetric matrix P € R™" is positive semidefinite if and only if
x"Px >0 (24)

for all x € R".

Eigen decomposition of P as
P = UAU' (25)
with A = diag(Aq, ..., A,) and

Ai >0 (26)
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Symmetric Positive Definite Matrices

A symmetric matrix P € R™" is positive definite if and only if
x"Px >0 (27)

for all x € R".

> FEigen values of P, A = diag(Ay, ..., A,) with

Ai>0 (28)
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Symmetric Positive Definite Matrices

A symmetric matrix P € R™" is positive definite if and only if
x"Px >0 (27)

for all x € R".

> FEigen values of P, A = diag(Ay, ..., A,) with

Ai>0 (28)

Qs Question for Homework: if one of the eigen values A; < 0, show that
you can also find a vector x such that x"Px < 0
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Review

The identity matrix I is

a diagonal matrix?
a symmetric matrix?

an orthogonal matrix?

vV v v Y

a positive (semi-)definite matrix?
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Review

The identity matrix I is

a diagonal matrix? v/
a symmetric matrix? v/

an orthogonal matrix? v/

vV v v Y

a positive (semi-)definite matrix? v/
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Review of Probability Theory



What is Probability?

The probability of landing heads is 0.52

42



Two interpretations

Frequentist Probability represents the long-run frequency of an event

> If we flip the coin many times, we expect it to land
heads about 52% times

43



Two interpretations

Frequentist Probability represents the long-run frequency of an event
> If we flip the coin many times, we expect it to land
heads about 52% times
Bayesian Probability quantifies our (un)certainty about an event

» We believe the coin is 52% of chance to land head

on the next toss

43



Bayesian Interpretation

Example scenarios of Bayesian interpretation of probability:

)

SPAM FILTER

University, VA 22903
Tuesday 10:00 AM

69"
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Binary Random Variables

» Event X. Such as

> the coin will lead head on the next toss
> it will rain tomorrow

> Sample space of X € {false, true} or for simplicity {0, 1}

45



Binary Random Variables

» Event X. Such as

> the coin will lead head on the next toss
> it will rain tomorrow

> Sample space of X € {false, true} or for simplicity {0, 1}
> Probability P(X = x) or P(x)

> Let X be the event that the coin will lead head on the next toss, then
the probability from the previous example is

P(X =1)=0.52 (29)

45



Bernoulli Distribution

Given the binary random variable X and
its sample space as {0, 1}

P(X =x)=6%1-0)'*
with a single parameter 0 as

0=P(X=1)

Jacob Bernoulli

46



Tossing a Coin Twice?

» Let X be the number of heads
> Sample space of X € {0, 1,2}

47



Tossing a Coin Twice?

> Let X be the number of heads

» Sample space of X € {0,1,2}

> Assume we use the same coin, the probability distribution of X
> P(X =0)=(1-0)
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Tossing a Coin Twice?

> Let X be the number of heads
» Sample space of X € {0,1,2}
> Assume we use the same coin, the probability distribution of X

> P(X =0)=(1-0)
> P(X =2) =62
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Tossing a Coin Twice?

> Let X be the number of heads

> Sample space of X € {0, 1,2}

> Assume we use the same coin, the probability distribution of X
> P(X =0)=(1-0)
> P(X =2) =62
> P(X=1)=0(1-0)+(1-0)0 =20(1 - 0)

47



General Case: Binomial Distribution

Consider a general case, in which we toss the coin n times, then the
random variable Y can be formulated as a binomial distribution

P(Y =k) = (Z)@k(l _gyr* (30)

n\ n!
(k) ©kl(n—k)!

is the binomial coefficient and

where

nl=n-n-1)-n-2)---1

48
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How to define the corresponding random variable?

> X e{1,2,3,4,5,6}
> X e {100000,010000, 001000, 000100, 000010, 000001 }

49



Categorical Distribution

6
P(X =x) = (0™ (31)
k=1

where

> x=(x1,x2,...,x6)
> x; €4{0,1}, and

> {Gk}g:1 are the parameters of this distribution, which is also the
probability of side k showing up.

50



Multinomial Distribution

Repeat the previous event n times, the corresponding probability
distribution is modeled as

K
n v
P(X =x) = (x1 . --xK) g 6; (32)

where x = (x1,...,xk) and each x; € {0,1,2,...,n} indicates the
number of times that side k showing up.

n _ n!
X1 XK x1!- - xg!

The sum of {x} follows the constraint:

K
S o

k=1

51



Gaussian Distribution

A random variable X € R is said to follow a normal (or Gaussian)
distribution W (i, 0?) if its probability density function is given by

f) = ———=exp (- (x_”)2) (33)

hro2 202

> u: mean

» ¢2: variance

> Probability of X € [4,b]: P(a < X <b) = [ f(x)dx
0.3}

021

0.11
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Gaussian Distribution (I1)

_ 1 (x — wp?
flx) = WeXP(— 752 ) (34)

There examples of Gaussian distributions

0.4
03
021

0.1

0—6 -4 -2 0 2 4 6 8

> Blue: N (0, 1) (standard normal distribution)
> Red: ¥ (0,2)
> Green: N(1,1)
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Gaussian Distribution (l1)

_ 1 (x — wp?
flx) = WeXP(— 752 ) (34)

There examples of Gaussian distributions

0.4
03
021

0.1

0—6 -4 -2 0 2 4 6 8
> Blue: N (0, 1) (standard normal distribution)
> Red: ¥ (0,2)
> Green: N(1,1)

& Question for Homework: describe a random event with the

probabilistic language 7



Probability of Two Random Variables

Modeling two random variables together with a joint distribution

P(X,Y) (35)

Related concepts

> Independence
> Conditional probability and chain rule

> Bayes rule
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Independence

Definition Two random variable X and Y are independent with each
other, if we can represent the joint probability as the product of their
marginal distributions for any values of X and Y, or mathematically,

P(X,Y) = P(X) - P(Y) (36)

Marginal distributions

P(X) = Y PX,Y) (7)
Y

P(Y) = Y P(X,Y) (9)
X

55



Independence

Definition Two random variable X and Y are independent with each
other, if we can represent the joint probability as the product of their
marginal distributions for any values of X and Y, or mathematically,

P(X,Y) = P(X) - P(Y) (36)

Marginal distributions > X: whether it is cloudy

> Y: whether it will rain

P(X) = Y PX,Y) (7)
Y P(XNnY) X=0 X=1

DIPX,Y) (38) Y=0 o035 o015
X Y=1 0.05 0.45

P(Y)
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Conditional Probability

Conditional probability of Y given X

P(X,Y)
P(Y|X) =
1% = 5 (39)
Example: document classification
> X:adocument
> Y: the label of this document
A special case: if X and Y are independent
P(Y'| X) = P(Y) (40)

Intuitively, it means Knowing X does not provide any new information
about' Y
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Conditional Probability

P(X,Y) X=0 X=1

> X: whether it is cloudy Y=0 0.35 0.15

> Y: whether it will rain Y=1 0.05 0.45

> P(Y | X =1)
> P(Y=0|X =1)=0.25,
» P(Y=1|X=1)=075
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> Y: whether it will rain Y=1 0.05 0.45
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Conditional Probability

P(X,Y) X=0 X=1

> X: whether it is cloudy Y=0 0.35 0.15
> Y: whether it will rain Y=1 0.05 0.45
> P(Y | X =1)

> P(Y=0|X =1)=0.25,
» P(Y=1|X=1)=075

> P(Y): P(Y=0)=P(Y =1)=0.5

& Question for Homework: compute conditional probability from a

given probabilistic table

57



Multivariate Gaussian

The probability density function of a multivariate Gaussian
distribution W (u, X) is defined as

1

1 _
(on )n/z PR S ) B

flx) =

where

> uis the n-dimensional mean vector and

» Y is the n X n covariance matrix.
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Covariance Matrix X

Assume p = 0, the probability density function is
f(x) ecexp ( - %xTZ_lx) (42)
In general, X is required to be a symmetric positive definite matrix

=1 X = diag(2,1)
X2 X2

@\ . f) .
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Sampling from Gaussians

Lo
AWM B e e M oW oa

Lo
AWM R e kM oW om

(a) :X=1

(b) : = =diag(2,1)

® Question for Homework: sample from a Gaussian distribution with a
pre-defined mean and variance
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Thank You!
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