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Prerequisites

▶ Programming and Algorithm
▶ CS 2150 or CS 3100 with a grade of C- or better

▶ Linear Algebra
▶ Math 3350 or APMA 3080 or equivalent

▶ Probability and Statistics
▶ APMA 3100, APMA 3110, MATH 3100, or equivalent
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Goal

The survey results (by Jan. 18, 12 PM)
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Outline

This course will cover the basic materials on the following topics

1. Introduction to learning theory
2. Linear classification and regression
3. Model selection and validation
4. Boosting
5. Optimization methods
6. Neural networks (e.g., CNN, RNN, Auto-encoders, Transformers)
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Outline (II)

The following topics will not be the emphasis of this course

▶ Statistical modeling
▶ e.g., parameter estimation, Bayesian statistics, graphical models

▶ Machine learning engineering
▶ e.g., how to implement a classifier from end to end
▶ although, we will provide some demo code for illustration

purposes

▶ Advanced topics in machine learning
▶ e.g., reinforcement learning, active learning, semi-supervised

learning, online learning
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Textbooks

▶ Shalev-Shwartz and Ben-David. Understanding Machine Learning:
From Theory to Algorithms. 2014

▶ Goodfellow, Bengio, and Courville. Deep Learning. 2016
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Reference Books

For students looking for additional reading materials

▶ Bishop. Pattern Recognition and Machine Learning. 2006

▶ Murphy. Machine Learning: A Probabilistic Perspective. 2012

▶ Mohri, Rostamizadeh, and Talwalkar. Foundations of Machine
Learning. 2nd Edition. 2018

▶ Hastie, Tibshirani, and Friedman. The Elements of Statistical
Learning (2nd Edition). 2009
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Homework and Grading Policy

▶ Homeworks (70%)
▶ Five homework assignments, 14 points each

▶ In-class Quiz (10%)
▶ For the instructor to get a better understanding of students’

feedback on the lectures
▶ 1 point each

▶ Final project (20%)
▶ There are some pre-defined problems with datasets provided
▶ Students will team up (3 – 4 students per group) to solve one

problem
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Grading Policy

The final grade is threshold-based instead of percentage-based
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Late Penalty

▶ Homework submission will be accepted up to 72 hours late, with
20% deduction per 24 hours on the points as a penalty

▶ Submission will not be accepted if more than 72 hours late

▶ Make sure not submit wrong files
▶ it is students responsbility to make sure they submit the right and

complete files for each homework

▶ It is usually better if students just turn in what they have in time
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Violation of the Honor Code

Plagiarism, examples are

▶ in a homework submission, copying answers from others directly
or some minor changes

▶ in a report, copying texts from a published paper (including,
some minor changes)

▶ in a code, using someone else’s functions/implementations
without acknowledging the contribution

11



Webpages

▶ Course webpage
http://yangfengji.net/uva-ml-undergrad/

which contains all the information you need about this course.

▶ Canvas
▶ For homework releasing and grading
▶ For announcement, online QA, discussion, etc.
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Why Taking this Course?



Machine Learning Courses
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An Example Course

Building logistic regression classifier
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Another Example

Building a GPT model with Transformer
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What is Missing?
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What is this?

▶ What’s the definition of this classifier?
▶ What if it does not work?
▶ What are its limitations?

In fact, if you explain how these parameters work and their effects, you can
skip at least one third of the class lectures.

18



What is this?

▶ What’s the definition of this classifier?
▶ What if it does not work?
▶ What are its limitations?

In fact, if you explain how these parameters work and their effects, you can
skip at least one third of the class lectures.

18



Mathematical/Statistical Background

To understanding machine learning, we need some mathematical and
statistical knowledge
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Now, let’s have some fun!

Warning: you will see lots of mathematical notations.
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Basic Linear Algebra



Linear Equations

Consider the following system of equations

4𝑥1 − 5𝑥2 = −13
−2𝑥1 + 3𝑥2 = 9

(1)

In matrix notation, it can be written as a more compact from

A𝒙 = 𝒃 (2)

with

A =

[
4 −5
−2 3

]
𝒙 =

[
𝑥1
𝑥2

]
𝒃 =

[
−13

9

]
(3)
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Basic Notations

A =

[
4 −5
−2 3

]
𝒙 =

[
𝑥1
𝑥2

]
𝒃 =

[
−13

9

]
▶ A ∈ ℝ𝑚×𝑛 : a matrix with 𝑚 rows and 𝑛 columns

▶ The element on the 𝑖-th row and the 𝑗-th column is denoted as 𝑎𝑖 , 𝑗
▶ 𝒙 ∈ ℝ𝑛 : a vector with 𝑛 entries. By convention, an 𝑛-dimensional

vector is often thought of as matrix with 𝑛 rows and 1 column,
known as a column vector.
▶ The 𝑖-th element is denoted as 𝑥𝑖
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Vector Norms

▶ A norm of a vector ∥𝒙∥ is informally a measure of the “length” of
the vector.

▶ Formally, a norm is any function 𝑓 : ℝ𝑛 → ℝ that satisfies four
properties

1. 𝑓 (𝒙) ≥ 0 for any 𝒙 ∈ ℝ𝑛

2. 𝑓 (𝒙) = 0 if and only if 𝒙 = 0
3. 𝑓 (𝑎𝒙) = |𝑎 | · 𝑓 (𝒙) for any 𝒙 ∈ ℝ𝑛

4. 𝑓 (𝒙 + 𝒚) ≤ 𝑓 (𝒙) + 𝑓 (𝒚), for any 𝒙 , 𝒚 ∈ ℝ𝑛
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ℓ2 Norm

The ℓ2 norm of a vector 𝒙 ∈ ℝ𝑛 is defined as

∥𝒙∥2 =

√√
𝑛∑
𝑖=1

𝑥2
𝑖

(4)

x

y

𝒙

∥𝒙∥2

Question for Homework: prove ℓ2 norm satisfies all four properties
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ℓ1 Norms

The ℓ1 norm of a vector 𝒙 ∈ ℝ𝑛 is defined as

∥𝒙∥1 =

𝑛∑
𝑖=1

|𝑥𝑖 | (5)
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Plots

For a two-dimensional vector 𝒙 = (𝑥1 , 𝑥2) ∈ ℝ2, which of the
following plot is ∥𝒙∥1 = 1?

𝑥1

𝑥2

(a)

𝑥1

𝑥2

(b)

𝑥1

𝑥2

(c)
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Dot Product

The dot product of 𝒙 , 𝒚 ∈ ℝ𝑛 is defined as

⟨𝒙 , 𝒚⟩ = 𝒙T𝒚 =

𝑛∑
𝑖=1

𝑥𝑖𝑦𝑖 (6)

where 𝒙T is the transpose of 𝒙.

▶ ∥𝒙∥2
2 = ⟨𝒙 , 𝒙⟩

▶ If 𝒙 = (0, 0, . . . , 1︸︷︷︸
𝑥𝑖

, . . . , 0), then ⟨𝒙 , 𝒚⟩ = 𝑦𝑖

▶ If 𝒙 is an unit vector (∥𝒙∥2 = 1), then ⟨𝒙 , 𝒚⟩ is the projection of 𝒚
on the direction of 𝒙

𝒙

𝒚
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Cauchy-Schwarz Inequality

For all 𝒙 , 𝒚 ∈ ℝ𝑛

|⟨𝒙 , 𝒚⟩| ≤ ∥𝒙∥2∥𝒚∥2 (7)

with equality if and only if 𝒙 = 𝛼𝒚 with 𝛼 ∈ ℝ

Proof:
Let �̃� = 𝒙

∥𝒙∥2
and �̃� =

𝒚
∥𝒚∥2

, then �̃� and �̃� are both unit vectors.

Based on the geometric interpretation on the previous slide, we have

⟨�̃� , �̃�⟩ ≤ 1 (8)

if and only if �̃� = �̃�.
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Matrix-Vector Multiplication

Given a matrix 𝑨 and a vector 𝒙, their multiplication is equivalent to
performing a linear transformation on 𝒙

𝑨𝒙 (9)

For example, consider the following matrix

𝑨 =

[
0.5 0
0 2

]
(10)

and three vectors

▶ 𝒙T
1 = [1, 2]

▶ 𝒙T
2 = [2, 4]

▶ 𝒙T
3 = [3, 6]

This is also what the function torch.nn.Linear means
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Two Special Matrices

▶ The identity matrix, denoted as I ∈ ℝ𝑛×𝑛], is a square matrix with
ones on the diagonal and zeros everywhere else.

I =


1

. . .

1

 (11)

▶ A diagonal matrix, denoted as D = diag(𝑑1 , 𝑑2 , . . . , 𝑑𝑛), is a
matrix where all non-diagonal elements are 0.

D =


𝑑1

. . .

𝑑𝑛

 (12)
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Inverse

The inverse of a square matrix A ∈ ℝ𝑛×𝑛 is denoted as A−1, which is
the unique matrix such that

𝑨−1𝑨 = 𝑰 = 𝑨𝑨−1 (13)

▶ Non-square matrices do not have inverses (by definition)
▶ Not all square matrices are invertible
▶ The solution of the linear equations in Eq. (1) is 𝒙 = A−1𝒃
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Inverse (II)

▶ In matrix-vector multiplication, an inverse matrix 𝑨−1 will
reverse the linear transformation performed by 𝑨

𝑨−1𝑨𝒙 = 𝒙 (14)

▶ When a matrix 𝑨 is not invertible, it means its linear
transformation is not reversible

𝑨 =

[
1 0
0 0

]
(15)

33



Inverse (II)

▶ In matrix-vector multiplication, an inverse matrix 𝑨−1 will
reverse the linear transformation performed by 𝑨

𝑨−1𝑨𝒙 = 𝒙 (14)

▶ When a matrix 𝑨 is not invertible, it means its linear
transformation is not reversible

𝑨 =

[
1 0
0 0

]
(15)

33



Orthogonal Matrices

▶ Two vectors 𝒙 , 𝒚 ∈ ℝ𝑛 are orthogonal if ⟨𝒙 , 𝒚⟩ = 0

𝒙

𝒚

▶ A square matrix U ∈ ℝ𝑛×𝑛 is orthogonal, if all its columns are
orthogonal to each other and normalized (orthonormal)

⟨𝒖𝑖 , 𝒖𝑗⟩ = 0, ∥𝒖𝑖 ∥ = 1, ∥𝒖𝑗 ∥ = 1 (16)

for 𝑖 , 𝑗 ∈ [𝑛] and 𝑖 ≠ 𝑗

▶ Furthermore, UTU = I = UUT, which further implies U−1 = UT
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A Special Case

Consider a matrix 𝑨 as

𝑨 =

[
0 1
1 0

]
(17)

For any 𝒙T = [𝑥1 , 𝑥2], we have

𝑨

[
𝑥1
𝑥2

]
=

[
𝑥2
𝑥1

]
(18)

The is a reflection operation. Operations like this are popularly used
in computer graphics.
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Symmetric Matrices

A symmetric matrix A ∈ ℝ𝑛×𝑛 is defined as

AT = A (19)

or, in other words,
𝑎𝑖 , 𝑗 = 𝑎 𝑗 ,𝑖 ∀𝑖 , 𝑗 ∈ [𝑛] (20)

Comments

▶ The identity matrix I is symmetric
▶ A diagonal matrix is symmetric

𝒙T𝑨𝒚 (21)

gives each dimension a different weight (importance) when
computing the similarity between 𝒙 and 𝒚
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Eigen Decomposition

Every symmetric matrix A can be decomposed as

A = UΛUT (22)

with

▶ Λ =


�1

. . .

�𝑛

 as a diagonal matrix

▶ Q is an orthogonal matrix

▶ Consider the similarity measurement

𝒙TA𝒚 = 𝒙TUΛUT𝒚 = (UT𝒙)TΛUT𝒚 (23)

Question for Homework: if a symmetric matrix A is invertible, show
A−1 = UΛ−1UT with Λ−1 = diag( 1

�1
, . . . , 1

�𝑛
)
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Symmetric Positive Semidefinite Matrices

A symmetric matrix P ∈ ℝ𝑛×𝑛 is positive semidefinite if and only if

𝒙TP𝒙 ≥ 0 (24)

for all 𝒙 ∈ ℝ𝑛 .

Eigen decomposition of P as

P = UΛUT (25)

with Λ = diag(�1 , . . . ,�𝑛) and

�𝑖 ≥ 0 (26)
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Symmetric Positive Definite Matrices

A symmetric matrix P ∈ ℝ𝑛×𝑛 is positive definite if and only if

𝒙TP𝒙 > 0 (27)

for all 𝒙 ∈ ℝ𝑛 .

▶ Eigen values of P, Λ = diag(�1 , . . . ,�𝑛) with

�𝑖 > 0 (28)

Question for Homework: if one of the eigen values �𝑖 < 0, show that
you can also find a vector 𝒙 such that 𝒙TP𝒙 < 0
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Review

The identity matrix I is

▶ a diagonal matrix?

✓

▶ a symmetric matrix?

✓

▶ an orthogonal matrix?

✓

▶ a positive (semi-)definite matrix?

✓
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Review

The identity matrix I is

▶ a diagonal matrix? ✓
▶ a symmetric matrix? ✓
▶ an orthogonal matrix? ✓
▶ a positive (semi-)definite matrix? ✓
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Review of Probability Theory



What is Probability?

The probability of landing heads is 0.52
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Two interpretations

Frequentist Probability represents the long-run frequency of an event
▶ If we flip the coin many times, we expect it to land

heads about 52% times

Bayesian Probability quantifies our (un)certainty about an event
▶ We believe the coin is 52% of chance to land head

on the next toss
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Bayesian Interpretation

Example scenarios of Bayesian interpretation of probability:
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Binary Random Variables

▶ Event 𝑋. Such as
▶ the coin will lead head on the next toss
▶ it will rain tomorrow

▶ Sample space of 𝑋 ∈ {false, true} or for simplicity {0, 1}

▶ Probability 𝑃(𝑋 = 𝑥) or 𝑃(𝑥)
▶ Let 𝑋 be the event that the coin will lead head on the next toss, then

the probability from the previous example is

𝑃(𝑋 = 1) = 0.52 (29)
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Bernoulli Distribution

Given the binary random variable 𝑋 and
its sample space as {0, 1}

𝑃(𝑋 = 𝑥) = �𝑥(1 − �)1−𝑥

with a single parameter � as

� = 𝑃(𝑋 = 1)

Jacob Bernoulli
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Tossing a Coin Twice?

▶ Let 𝑋 be the number of heads
▶ Sample space of 𝑋 ∈ {0, 1, 2}

▶ Assume we use the same coin, the probability distribution of 𝑋
▶ 𝑃(𝑋 = 0) = (1 − �)2

▶ 𝑃(𝑋 = 2) = �2

▶ 𝑃(𝑋 = 1) = �(1 − �) + (1 − �)� = 2�(1 − �)
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General Case: Binomial Distribution

Consider a general case, in which we toss the coin 𝑛 times, then the
random variable 𝑌 can be formulated as a binomial distribution

𝑃(𝑌 = 𝑘) =
(
𝑛

𝑘

)
�𝑘(1 − �)𝑛−𝑘 (30)

where (
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)!

is the binomial coefficient and

𝑛! = 𝑛 · (𝑛 − 1) · (𝑛 − 2) · · · 1
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Tossing a Dice

How to define the corresponding random variable?

▶ 𝑋 ∈ {1, 2, 3, 4, 5, 6}
▶ 𝑿 ∈ {100000, 010000, 001000, 000100, 000010, 000001}
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Categorical Distribution

𝑃(𝑿 = 𝒙) =
6∏
𝑘=1

(�𝑘)𝑥𝑘 (31)

where

▶ 𝒙 = (𝑥1 , 𝑥2 , . . . , 𝑥6)
▶ 𝑥𝑘 ∈ {0, 1}, and
▶ {�𝑘}6

𝑘=1 are the parameters of this distribution, which is also the
probability of side 𝑘 showing up.
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Multinomial Distribution

Repeat the previous event 𝑛 times, the corresponding probability
distribution is modeled as

𝑃(𝑿 = 𝒙) =
(

𝑛

𝑥1 · · · 𝑥𝐾

) 𝐾∏
𝑘=1

�𝑥𝑘
𝑘

(32)

where 𝒙 = (𝑥1 , . . . , 𝑥𝐾) and each 𝑥𝑘 ∈ {0, 1, 2, . . . , 𝑛} indicates the
number of times that side 𝑘 showing up.(

𝑛

𝑥1 · · · 𝑥𝐾

)
=

𝑛!
𝑥1! · · · 𝑥𝐾 !

The sum of {𝑥𝑘} follows the constraint:

𝐾∑
𝑘=1

𝑥𝑘 = 𝑛
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Gaussian Distribution

A random variable 𝑋 ∈ ℝ is said to follow a normal (or Gaussian)
distribution N(�, 𝜎2) if its probability density function is given by

𝑓 (𝑥) = 1√
2𝜋𝜎2

exp
(
−

(𝑥 − �)2
2𝜎2

)
(33)

▶ �: mean
▶ 𝜎2: variance
▶ Probability of 𝑋 ∈ [𝑎, 𝑏]: 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4
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Gaussian Distribution (II)

𝑓 (𝑥) = 1√
2𝜋𝜎2

exp
(
− (𝑥 − �)2

2𝜎2

)
(34)

There examples of Gaussian distributions

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

▶ Blue: N(0, 1) (standard normal distribution)
▶ Red: N(0, 2)
▶ Green: N(1, 1)

Question for Homework: describe a random event with the
probabilistic language
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Gaussian Distribution (II)

𝑓 (𝑥) = 1√
2𝜋𝜎2

exp
(
− (𝑥 − �)2

2𝜎2

)
(34)

There examples of Gaussian distributions

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

▶ Blue: N(0, 1) (standard normal distribution)
▶ Red: N(0, 2)
▶ Green: N(1, 1)

Question for Homework: describe a random event with the
probabilistic language

53



Probability of Two Random Variables

Modeling two random variables together with a joint distribution

𝑃(𝑋,𝑌) (35)

Related concepts

▶ Independence
▶ Conditional probability and chain rule
▶ Bayes rule
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Independence

Definition Two random variable 𝑋 and 𝑌 are independent with each
other, if we can represent the joint probability as the product of their
marginal distributions for any values of 𝑋 and 𝑌, or mathematically,

𝑃(𝑋,𝑌) = 𝑃(𝑋) · 𝑃(𝑌) (36)

Marginal distributions

𝑃(𝑋) =
∑
𝑌

𝑃(𝑋,𝑌) (37)

𝑃(𝑌) =
∑
𝑋

𝑃(𝑋,𝑌) (38)

▶ 𝑋: whether it is cloudy
▶ 𝑌: whether it will rain

𝑃(𝑋 ∩ 𝑌) 𝑋 = 0 𝑋 = 1

𝑌 = 0 0.35 0.15
𝑌 = 1 0.05 0.45
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Conditional Probability

Conditional probability of 𝑌 given 𝑋

𝑃(𝑌 | 𝑋) = 𝑃(𝑋,𝑌)
𝑃(𝑋) (39)

Example: document classification

▶ 𝑋: a document
▶ 𝑌: the label of this document

A special case: if 𝑋 and 𝑌 are independent

𝑃(𝑌 | 𝑋) = 𝑃(𝑌) (40)

Intuitively, it means Knowing 𝑋 does not provide any new information
about 𝑌
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Conditional Probability

▶ 𝑋: whether it is cloudy
▶ 𝑌: whether it will rain

𝑃(𝑋,𝑌) 𝑋 = 0 𝑋 = 1

𝑌 = 0 0.35 0.15
𝑌 = 1 0.05 0.45

▶ 𝑃(𝑌 | 𝑋 = 1):
▶ 𝑃(𝑌 = 0 | 𝑋 = 1) = 0.25,
▶ 𝑃(𝑌 = 1 | 𝑋 = 1) = 0.75

▶ 𝑃(𝑌): 𝑃(𝑌 = 0) = 𝑃(𝑌 = 1) = 0.5

Question for Homework: compute conditional probability from a
given probabilistic table
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Multivariate Gaussian

The probability density function of a multivariate Gaussian
distribution N(𝝁,Σ) is defined as

𝑓 (𝒙) = 1
(2𝜋)𝑛/2

1
|Σ|1/2

exp
(
− 1

2 (𝒙 − 𝝁)TΣ−1(𝒙 − 𝝁)
)

(41)

where

▶ 𝝁 is the 𝑛-dimensional mean vector and
▶ Σ is the 𝑛 × 𝑛 covariance matrix.
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Covariance Matrix Σ

Assume 𝝁 = 0, the probability density function is

𝑓 (𝒙) ∝ exp
(
− 1

2 𝒙
TΣ−1𝒙

)
(42)

In general, Σ is required to be a symmetric positive definite matrix

Σ = I

𝑥1

𝑥2
Σ = diag(2, 1)

𝑥1

𝑥2
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Sampling from Gaussians

(a) (b)

(a) : Σ = I
(b) : Σ = diag(2, 1)

Question for Homework: sample from a Gaussian distribution with a
pre-defined mean and variance
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Thank You!
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