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Reducing DImensions




Curse of Dimensionality

What is the volume difference between two d-dimensional
balls with radii 1 = 1 and r, = 0.99
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Curse of Dimensionality

What is the volume difference between two d-dimensional
balls with radii 1 = 1 and r, = 0.99

> d=2: 3n(rl —r3) ~0.03
KN > d =3 5n(r}—1))~0.12
» General form: r(”; fl)(rf - rg)

with r‘zi — Owhend — oo

> E.g., 3% = 0.00657

Question: what will happen if we uniformly sample from
a d-dimensional ball?



Dimensionality Reduction

Dimensionality Reduction is the process of taking data in
a high dimensional space and mapping it into a new
space whose dimensionality is much smaller.



Dimensionality Reduction

Dimensionality Reduction is the process of taking data in
a high dimensional space and mapping it into a new
space whose dimensionality is much smaller.

Mathematically, it means
fix—x (1)

where x € RY, # e R" withn < d



Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project
x = (x1, x2) into the direction along x; or x»
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Question: Given these two data examples, which
direction we should pick? x; or x,?
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Reducing Dimensions: A toy example (ll)

There is a better solution if we are allowed to rotate the
coordinate

X2

X1




Reducing Dimensions: A toy example (ll)

There is a better solution if we are allowed to rotate the
coordinate

X2

X1

Pick u1, then we preserve all the variance of the examples



Reducing Dimensions: A toy example (lll)

Consider a general case, where the examples do not lie on
a perfect line

[Bishop, 2006, Section 12.1] 7



Reducing Dimensions: A toy example (lll)

Consider a general case, where the examples do not lie on
a perfect line

T

We can follow the same idea by finding a direction that
can preserve most of the variance of the examples

[Bishop, 2006, Section 12.1]



Principal Component Analysis




Formulation

Given a set of example S = {x1,...,x}

» Centering the data by removing the mean
x= 4 N

xi—x;i—x Vie|[m] (2)



Formulation

Given a set of example S = {x1,...,x}
» Centering the data by removing the mean
x= 4 N
xi—x;i—x Vie|[m] (2)

> Assume the direction that we would like to project
the data is u, then the objective function is the data
variance

)= - > @) ®)
i=1



Formulation

Given a set of example S = {x1,...,x}

» Centering the data by removing the mean
x= 4 N
xi—x;i—x Vie|[m] (2)
> Assume the direction that we would like to project

the data is u, then the objective function is the data
variance

)= - > @) ®)
i=1

» Maximize [(u) is trivial, if there is no constriant on u.
Therefore, we set [lul|2 = u'u =1



Covariance Matrix

The definition of J(u#) can be written as

Jw) = - (w0 @
i=1
= B Z ulxiux; (5)
i=1
= % ; uTx,'xiTu (6)
1 m
_ uT(szixiT)u (7)
i=1
= u'Zu (8)

where X is the data covariance matrix 0



Optimization

» The optimization of finding a single direction
projection is

max J(u) = u'Zu 9)

s.t. wu=1 (10)

11



Optimization
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» It can be converted to an unconstrained optimization
problem with a Lagrange multiplier

max {uTZu + A(1 - uTu)} (11)
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Optimization

» The optimization of finding a single direction
projection is

max J(u) = u'Lu 9)
s.t. wu=1 (10)

» It can be converted to an unconstrained optimization

problem with a Lagrange multiplier
max {uTZu +A(1 - uTu)} (11)
» The optimal solution is given by

Yu—Au=0 (12)
Xu=Au (13)

11



Two Observations

There are two observations from

Yu = Au (14)

» Firs, A is an eigenvalue of X and u is the
corresponding eigenvector (Lecture o1 page 29).
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Two Observations

There are two observations from

Yu = Au (14)

» Firs, A is an eigenvalue of X and u is the
corresponding eigenvector (Lecture o1 page 29).

> Second, multiplying u" on both sides, we have
u'Zu=A2A (15)

In order to maximize J(u), A has to the largest
eigenvalue and
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Principal Component Analysis

> As u indicates the first major direction that can
preserve the data variance, it is called the first
principal component
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Principal Component Analysis

> As u indicates the first major direction that can
preserve the data variance, it is called the first
principal component

» In general, with eigen decomposition, we have

U'tU =A (16)

> Eigenvalues A = diag(Ay,...,A4)
> Eigenvectors U = [uy,...,u,]

13



Principal Component Analysis (Il)

Assume in A = diag(Ay, ..., Ayg),
AM>2A > > Ay (17)
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Principal Component Analysis (Il)

Assume in A = diag(Ay, ..., Ayg),
A=Ay > > Ay (17)
To reduce the dimensionality of x from d to n, withn < d

> Take the first n eigenvectors in U and form

U=[ui,... u,] e R>" (18)
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Principal Component Analysis (Il)

Assume in A = diag(Ay, ..., Ayg),
AM2Ar 22 Ay (17)
To reduce the dimensionality of x from d to n, withn < d
> Take the first n eigenvectors in U and form
U=[ui,... u,] e R>" (18)
» Reduce the dimensionality of x as
F=U"xeR" (19)
» The value of n can be determined by the following

2?21 Ai
d
i=1 Ai

~ 0.95 (20)

14



Applications: Image Processing

Reduce the dimensionality of an image dataset from
28x28=784to M

3 3% 3 3

(a) Original data

[Bishop, 2006, Section 12.1]
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Applications: Image Processing

Reduce the dimensionality of an image dataset from
28x28=784to M

3 3% 3 3

(a) Original data

Original M =1 M =10 M =50 M =250

333 3%

(b) With the first M principal components

[Bishop, 2006, Section 12.1]
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A Different Viewpoint of PCA




Data Reconstruction

Another way to formulate the objective function of PCA
m
- 2
gvl;{;_z; lx; — UWx;]2 (21)
i=

where

> W e R™%: mapping x; from the original space to a
lower-dimensional space R"
> U € R™": mapping back the original space R?

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Data Reconstruction

Another way to formulate the objective function of PCA
m
- 2
gvl;{;_z; lx; — UWx;]2 (21)
i=

where

> W e R™%: mapping x; from the original space to a
lower-dimensional space R"

> U € R™": mapping back the original space R?

» Dimensionality reduction is performed as ¥ = Ux,
while W make sure the reduction does not loss much

information

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Optimization

Consider the optimization problem

m
; . 112
rv{}}‘r}z; lx; = UWx | (22)
1=

» Let W, U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
» the columns of U are orthonormal
» W=Uu'
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Optimization

Consider the optimization problem

m
; . 112
rv{}}‘r}z; lx; = UWx | (22)
1=

» Let W, U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
» the columns of U are orthonormal
» W=Uu'
» The optimization problem can be simplified as

m
min > [lx; - UU x|} (23)
utu=I1 =1

The solution will be the same.
18



Nonlinear Extension

If we extend the both mappings to be nonlinear, then the
model becomes a simple encoder-decoder neural network
model

m
. L . . 2
rvr;;g;nxz tanh(U - tanh(Wx;))|3 (24)

where

> % = tanh(Wx;) is a simple encoder
» x = tanh(UX) is a simple decoder
» No closed-form solutions of W, U, although the

backpropagation algorithm still applies here
19
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