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Reducing DImensions



Curse of Dimensionality

What is the volume difference between two d-dimensional
balls with radii r1 � 1 and r2 � 0.99

I d � 2: 1
2π(r2

1 − r2
2) ≈ 0.03

I d � 3: 4
3π(r3

1 − r3
2) ≈ 0.12

I General form: πd/2

Γ( d
2+1)(r

d
1 − rd

2 )
with rd

2 → 0 when d →∞
I E.g., r500

2 � 0.00657

Question: what will happen if we uniformly sample from
a d-dimensional ball?
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Dimensionality Reduction

Dimensionality Reduction is the process of taking data in
a high dimensional space and mapping it into a new

space whose dimensionality is much smaller.

Mathematically, it means

f : x → x̃ (1)

where x ∈ Rd , x̃ ∈ Rn with n < d
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Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project
x � (x1, x2) into the direction along x1 or x2

x1

x2

Question: Given these two data examples, which
direction we should pick? x1 or x2?

5



Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project
x � (x1, x2) into the direction along x1 or x2

x1

x2

Question: Given these two data examples, which
direction we should pick? x1 or x2?

5



Reducing Dimensions: A toy example (II)

There is a better solution if we are allowed to rotate the
coordinate

x1

x2

u1

u2

Pick u1, then we preserve all the variance of the examples
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Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on
a perfect line

We can follow the same idea by finding a direction that
can preserve most of the variance of the examples

[Bishop, 2006, Section 12.1] 7
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Principal Component Analysis



Formulation

Given a set of example S � {x1, . . . , xm}

I Centering the data by removing the mean
x̄ �

1
m

∑m
i�1 xi

xi ← xi − x̄ ∀i ∈ [m] (2)

I Assume the direction that we would like to project
the data is u, then the objective function is the data
variance

J(u) � 1
m

m∑
i�1
(uTxi)2 (3)

I Maximize J(u) is trivial, if there is no constriant on u.
Therefore, we set ‖u‖22 � uTu � 1
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Covariance Matrix

The definition of J(u) can be written as

J(u) �
1
m

m∑
i�1
(uTxi)2 (4)

�
1
m

m∑
i�1

uTxiuTxi (5)

�
1
m

m∑
i�1

uTxixT
i u (6)

� uT
( 1

m

m∑
i�1

xixT
i

)
u (7)

� uTΣu (8)

where Σ is the data covariance matrix 10



Optimization

I The optimization of finding a single direction
projection is

max
u

J(u) � uTΣu (9)

s.t. uTu � 1 (10)

I It can be converted to an unconstrained optimization
problem with a Lagrange multiplier

max
u

{
uTΣu + λ(1 − uTu)

}
(11)

I The optimal solution is given by

Σu − λu � 0 (12)
Σu � λu (13)
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Two Observations

There are two observations from

Σu � λu (14)

I Firs, λ is an eigenvalue of Σ and u is the
corresponding eigenvector (Lecture 01 page 29).

I Second, multiplying uT on both sides, we have

uTΣu � λ (15)

In order to maximize J(u), λ has to the largest
eigenvalue and
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Principal Component Analysis

I As u indicates the first major direction that can
preserve the data variance, it is called the first
principal component

I In general, with eigen decomposition, we have

UTΣU � Λ (16)

I Eigenvalues Λ � diag(λ1 , . . . , λd)
I Eigenvectors U � [u1 , . . . , ud]
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Principal Component Analysis (II)

Assume in Λ � diag(λ1, . . . , λd),
λ1 ≥ λ2 ≥ · · · ≥ λd (17)

To reduce the dimensionality of x from d to n, with n < d

I Take the first n eigenvectors in U and form

Ũ � [u1, . . . , un] ∈ Rd×n (18)

I Reduce the dimensionality of x as

x̃ � ŨTx ∈ Rn (19)
I The value of n can be determined by the following∑n

i�1 λi∑d
i�1 λi

≈ 0.95 (20)
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Applications: Image Processing

Reduce the dimensionality of an image dataset from
28 × 28 � 784 to M

(a) Original data

(b) With the first M principal components

[Bishop, 2006, Section 12.1]
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A Different Viewpoint of PCA



Data Reconstruction

Another way to formulate the objective function of PCA

min
W ,U

m∑
i�1
‖xi −UW xi ‖22 (21)

where

I W ∈ Rn×d : mapping xi from the original space to a
lower-dimensional space Rn

I U ∈ Rd×n : mapping back the original space Rd

I Dimensionality reduction is performed as x̃ � U x,
while W make sure the reduction does not loss much
information

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Optimization

Consider the optimization problem

min
W ,V

m∑
i�1
‖xi −UW xi ‖22 (22)

I Let W ,U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
I the columns of U are orthonormal
I W � UT

I The optimization problem can be simplified as

min
UTU�I

m∑
i�1
‖xi −UUTxi ‖22 (23)

The solution will be the same.

18



Optimization

Consider the optimization problem

min
W ,V

m∑
i�1
‖xi −UW xi ‖22 (22)

I Let W ,U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
I the columns of U are orthonormal
I W � UT

I The optimization problem can be simplified as

min
UTU�I

m∑
i�1
‖xi −UUTxi ‖22 (23)

The solution will be the same.
18



Nonlinear Extension

If we extend the both mappings to be nonlinear, then the
model becomes a simple encoder-decoder neural network
model

min
W ,V

m∑
i�1
‖xi − tanh(U · tanh(W xi))‖22 (24)

where

I x̃ � tanh(W xi) is a simple encoder
I x � tanh(U x̃) is a simple decoder
I No closed-form solutions of W ,U , although the

backpropagation algorithm still applies here
19
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