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Clustering



Clustering

Clustering is the task of grouping a set of objects such that
similar objects end up in the same group and dissimilar

objects are separated into different groups

[Shalev-Shwartz and Ben-David, 2014, Page 307]
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Motivation

A good clustering can help us understand the data

[MacKay, 2003, Chap 20]
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Movitation(II)

A good clustering has predictive power and can be useful
to build better classifiers

[MacKay, 2003, Chap 20]
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Motivation (III)

Failures of a cluster model may highlight interesting
properties of data or a single data point

[MacKay, 2003, Chap 20]
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Challenges

I Lack of ground truth — like any other unsupervised
learning tasks

I Definition of similarity measurement
I Two images are similar
I Two documents are similar

[Shalev-Shwartz and Ben-David, 2014, Page 307]
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K-Means Clustering



K-Means Clustering

I A data set S � {x1, . . . , xm} with xi ∈ Rd

I Partition the data set into some number K of clusters
I K is a hyper-parameter given before learning
I Another example task of unsupervised learning
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Objective Function

I Introduce ri ∈ [K] for each data point xi , which is a
determinstric variable

I The objective function of k-means clustering

J(r , µ) �
m∑

i�1

K∑
k�1

δ(ri � k)‖xi − µk ‖22 (1)

where {µk}Kk�1 ∈ R
d . Each µk is called a prototype

associated with the k-th cluster.

I Learning: minimize equation 1

argmin
r ,µ

J(r , µ) (2)
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Learning: Initialization

Randomly initialize {µk}Kk�1
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Learning: Assignment Step

Given {µk}Kk�1, for each xi , find the value of ri is
equivalent to assign the data point to a cluster

ri ← argmin
k′
‖xi − µk′‖22 (3)
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Learning: Update Step

Given {ri}mi�1, the algorithm updates µk as

µk �

∑m
i�1 δ(ri � k)xi∑m

i�1 δ(ri � k) (4)

I The updated µk equals to the mean of all data points
in cluster k

I Therefore, this algorithm is called K-means algorithm
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Algorithm

With some randomly initialized {µk}Kk�1, iterate the
following two steps until converge

Assignment Step Assign ri for each xi

ri ← argmin
k′
‖xi − µk′‖22 (5)

Update Step Updates µk with {ri}mi�1

µk �

∑m
i�1 δ(ri � k)xi∑m

i�1 δ(ri � k) (6)
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Example (Cont.)

[Bishop, 2006, Page 426]
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From GMMs to K-means



Gaussian Mixture Models

Consider a GMMwith two components

q(x , z) � q(z)q(x | z)
� αδ(z�1) ·N(x; µ1,Σ1)δ(z�1)

· (1 − α)δ(z�2) ·N(x; µ2,Σ2)δ(z�2) (7)

And the marginal probability p(x) is

q(x) � q(z � 1)q(x | z � 1) + q(z � 2)q(x | z � 2)
� α ·N(x; µ1,Σ1) + (1 − α) ·N(x; µ2,Σ2) (8)
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A Special Case

Consider the first component in this GMMwith
parameters µ1 and Σ1

I Assume Σ1 � εI, then

|Σ1 | � εd (9)

(x − µ1)TΣ−1
1 (x − µ) �

1
ε
‖x − µ‖22 (10)

I A Gaussian component can be simplified as

q(xi | zi � 1) �
1

(2π) d
2 |Σ1 |

1
2

exp
(
− 1

2
(xi − µ1)TΣ−1

1 (xi − µ1)
)

�
1

(2πε) d
2

exp
(
− 1

2ε
‖xi − µ1‖22

)
(11)

I Similar results with the second component with
Σ2 � εI
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A Special Case (II)

From the previous discussion, we know that, given θ,
q(zi | xi) is computed as

q(zi � 1 | xi) �
α ·N(xi ; µ1 ,Σ1)

α ·N(xi ; µ1 ,Σ1) + (1 − α) ·N(xi ; µ2 ,Σ2)

�
α exp(− 1

2ε ‖xi − µ1‖22)
α exp(− 1

2ε ‖xi − µ1‖22) + (1 − α) exp(− 1
2ε ‖xi − µ2‖22

I When ε→ 0

q(zi � 1 | xi) →
{

1 ‖xi − µ1‖2 < ‖xi − µ2‖2
0 ‖xi − µ1‖2 > ‖xi − µ2‖2

(12)

I ri in K-means is a very special case of zi in GMM
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When K-means Will Fail?

Recall that K-means is an extreme case of GMMwith
Σ � εI and ε→ 0

Parameters

µ1 � [1.5, 0]T µ2 � [−1.5, 0]T

Σ1 � Σ2 � diag(0.1, 10.0) (13)
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When K-means Will Fail? (II)

Recall that K-means is an extreme case of GMMwith
Σ � εI and ε→ 0

20



How About GMM?

With the following setup1

I Randomly initialize GMM parameters (instead of
using K-means to initalize)

I Set covariance_type to be tied

1Please refer to the demo code for more detail
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Spectral Clustering

Instead of computing the distance between data points to
some prototypes, spectral clustering is purely based on
the similarity between data points, which can address the
problem like this

[Shalev-Shwartz and Ben-David, 2014, Section 22.3]
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