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Basic Definition



Data generation process

An idealized process to illustrate the relations among
domain set X, label set Y, and the training set S

1. the probability distribution D over the domain set X
2. sample an instance x ∈ Xaccording to D

3. annotate it using the labeling function f as y � f (x)

[From Lecture 02]
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Example

Here is an data generation model

p(x) � 0.6 ·N(x; µ+,Σ+)︸               ︷︷               ︸
y�+1

+ 0.4 ·N(x; µ-,Σ-)︸              ︷︷              ︸
y�−1

(1)

with

I µ+ � [2, 0]T

I Σ+ �

[
1.0 0.8
0.8 2.0

]
I µ- � [−2, 0]T

I Σ- �

[
2.0 0.6
0.6 1.0

]
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Example (II)

The data generation model can also be represented with
the following components

p(y � +1) � 0.6 (2)
p(y � −1) � 1 − p(y � +1) � 0.4 (3)

p(x | y � +1) � N(x; µ+,Σ+) (4)
p(x | y � −1) � N(x; µ-,Σ-) (5)
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Data Generation

The specific data generation process:
for each data point

1. Randomly select a value of y ∈ {+1,−1} based on

p(y � +1) � 0.6 p(y � −1) � 0.4 (6)

2. Sample x from the corresponding component based
on the value of y

p(x | y) �
{
N(x; µ+,Σ+) y � +1
N(x; µ-,Σ-) y � −1

(7)

3. Add (x , y) to S, go to step 1
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Illustration

With N � 1000 samples, here is the plot

I 588 positive samples and 412 negative samples
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Discriminative Models for Classification

I Discriminative models directly give predictions on
the target variable (e.g., y)

I Example: logistic regression

p(y | x) � σ(y〈w , x〉) � 1
1 + e−y〈w ,x〉 (8)

where w is the model parameter

I Other examples
I AdaBoost (lecture 05)
I SVMs (lecture 07)
I Feed-forward neural network (lecture 08)
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Generative Models for Classification

I Basic idea: Building a classifier by simulating the data
generation process

I For the binary classification problem, recall the basic
components of the data generation process
I p(y)where y ∈ {−1,+1}
I p(x | y � +1)where x ∈ Rd

I p(x | y � −1)where x ∈ Rd

I Challenge in machine learning: we do not know any
of them, instead we have the samples S from this
distribution
I This has always been our assumption in machine

learning — we have no idea about the true data
distribution
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Generative Models for Classification (II)

We use a set of distribution q(·) to approximate the true
distribution p(·)

Data Generation Model Generative Model

p(y) q(y)
p(x | y � +1) q(x | y � +1)
p(x | y � −1) q(x | y � −1)
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Learning with Generative Models

1. Define distributions for all components

2. Estimate the parameters for each component
distribution
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Defining Distributions

A typical way of defining distributions for generative
models is based on our understanding about the problem

I Output domain y ∈ {+1,−1}: Bernoulli distribution

p(y) � Bern(y; α) � αδ(y�+1)(1 − α)δ(y�−1) (9)

where α ∈ (0, 1) is the parameter
I Input domain x ∈ Rd : Gaussian distribution

p(x | y � +1) � N(x; µ+,Σ+) (10)

where µ+ and Σ+ are the parameters
I Similarly, for p(x | y � −1)

p(x | y � −1) � N(x; µ-,Σ-) (11)

where µ- and Σ- are the parameters
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Parameter Estimation

I The collection of the parameters

θ � {α, µ+,Σ+, µ-,Σ-} (12)

I Training data S � {(x1, y1), . . . , (xm , ym)}

I Learning algorithm: Maximum Likelihood
Estimation (MLE)
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Maximum Likelihood Estimation (MLE)

MLE defined on the whole distribution q(x , y)

θ← argmax
θ′

m∑
i�1

log q(xi , yi ; θ′) (13)

Based on the chain rule of probability

q(x , y; θ) � q(y; α)q(x | y; µy ,Σy), (14)

Therefore

θ̂← argmax
θ

{ m∑
i�1

log log q(yi ; α)+
m∑

i�1
log q(xi | yi ; µy ,Σy)

}
the last item has two components, depending on the value
of y

13
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MLE: Bernoulli Distribution

Recall the definition of Bernoulli distribution, we have
m∑

i�1
log q(yi ; α) �

m∑
i�1
{δ(yi � +1) log α+δ(yi � −1) log(1−α)}

(15)

Then, the value of α can be estimated from

d
∑m

i�1 log q(yi ; α)
dα

�

∑m
i�1 δ(yi � +1)

α
−

∑m
i�1 δ(yi � −1)

1 − α � 0
(16)

therefore,

α �

∑m
i�1 δ(yi � +1)

m
(17)
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MLE: Gaussian Distribution

The definition of multi-variate Gaussian distribution

q(x | y; µ,Σ) � 1√
(2π)d |Σ|

exp
(
− 1

2(x−µ)
TΣ−1(x−µ)

)
(18)

I For y � +1, MLE on µ+ and Σ+ will only consider the
samples x with y � +1 (assume it’s S+)

I MLE on µ+
µ �

1
|S+ |

∑
xi∈S+

xi (19)

I MLE on Σ+

Σ+ �
1
|S+ |

∑
xi∈S+

(xi − µ)(xi − µ)T (20)

I Exercise: prove equations 19 and 20 with d � 1
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Example: Parameter Estimation

Given N � 1000 samples, here are the parameters

Parameter p(·) q(·)

µ+ [2, 0]T [1.95,−0.11]T

Σ+

[
1.0 0.8
0.8 2.0

] [
0.88 0.74
0.74 1.97

]
µ- [−2, 0]T [−2.08, 0.08]T

Σ-

[
2.0 0.6
0.6 1.0

] [
1.88 0.55
0.55 1.07

]
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Prediction

I For a new data point x′, the prediction is given as

q(y′ | x′) �
q(y′)q(x | y′)

q(x′) ∝ q(y′)q(x′ | y′) (21)

No need to compute q(x′)

I Prediction rule

y′ �
{
+1 q(y′ � +1 | x′) > q(y′ � −1 | x′)
−1 q(y′ � +1 | x′) < q(y′ � +1 | x′) (22)

I Although equation 22 looks like the one used in the
Bayes optimal predictor, the prediction power is
limited by

q(y′ | x′) ≈ p(y | x) (23)
Again, we don’t know p(·)
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Naive Bayes Classifiers



Number of Parameters

Assume x � (x·,1, . . . , x·,d) ∈ Rd , then the number of
parameters in q(x , y)

I q(y): 1 (α)
I q(x | y � +1):

I µ+ ∈ Rd : d parameters
I Σ+ ∈ Rd×d : d2 parameters

I q(x | y � −1): d2 + d parameters

In total, we have 2d2 + 2d + 1 parameters
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Challenge of Parameter Estimation

I When d � 100, we have 2d2 + 2d + 1 � 20201
parameters

I A close look about the covariance matrix Σ in a
multivariate Gaussian distribution

Σ �


σ2

1,1 · · · σ2
1,d

...
. . .

...

σ2
d ,1 · · · σ2

d ,d

 (24)

I To reduce the number of parameters, we assume

σi , j � 0 if i , j (25)
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Diagonal Covariance Matrix

With the diagonal covariance matrix

Σ �


σ2

1,1 · · · 0
...

. . .
...

0 · · · σ2
d ,d

 (26)

Now, the multivariate Gaussian distribution can be
rewritten with

|Σ| �

d∏
j�1

σ2
j, j (27)

(x − µ)TΣ−1(x − µ) �

d∑
j�1

(x·, j − µ j)2

σ2
j, j

(28)
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Diagonal Covariance Matrix (II)

In other words

q(x | y , µ,Σ) �
d∏

j�1
q(x·, j | y; µ j , σ

2
j, j) (29)

I Conditional Independence: Equation 29 means,
given y, each component x j is independent of other
components

I This is a strong and naive assumption about q(x | ·)
I Together with q(y), this generative model is called

the Naive Bayes classifier
I Parameter estimation can be done per dimension
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Example: Parameter Estimation

Given N � 1000 samples, here are the parameters

Parameter p(·) q(·) Naive Bayes

µ+ [2, 0]T [1.95,−0.11]T [1.95,−0.11]T

Σ+

[
1.0 0.8
0.8 2.0

] [
0.88 0.74
0.74 1.97

] [
0.88 0

0 1.97

]
µ- [−2, 0]T [−2.08, 0.08]T [−2.08, 0.08]T

Σ-

[
2.0 0.6
0.6 1.0

] [
1.88 0.55
0.55 1.07

] [
1.88 0

0 1.07

]
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Latent Variable Models



Data Generation Model, Revisited

Consider the following model again without any label
information

p(x) � α ·N(x; µ1,Σ1)︸             ︷︷             ︸
c�1

+ (1 − α) ·N(x; µ2,Σ2)︸                    ︷︷                    ︸
c�2

(30)

I No labeling information
I Instead of having two classes, now it has two

components c ∈ {1, 2}

I It is a specific case of Gaussian mixture models
I A mixture model with two Gaussian components

25
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Data Generation

The data generation process: for each data point

1. Randomly select a component c based on

p(c � 1) � α p(c � 2) � 1 − α (31)

2. Sample x from the corresponding component c

p(x | y) �
{
N(x; µ1,Σ1) c � 1
N(x; µ2,Σ2) c � 2

(32)

3. Add x to S, go to step 1

26
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Illustration

Here is an example data set S with 1,000 samples

No label information available
27



The Learning Problem

Consider using the following distribution to fit the data S

q(x) � α ·N(x; µ1,Σ1) + (1 − α) ·N(x; µ2,Σ2) (33)

I This is a density estimation problem — one of the
unsupervised learning problems

I The number of components in q(x) is part of the
assumption based on our understanding about the data

I Without knowing the true data distribution, the
number of components is treated as a
hyper-parameter (predetermined before learning)

28
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Parameter Estimation

I Based on the general form of GMMs, the parameters
are θ � {α, µ1,Σ1, µ2,Σ2}

I Given a set of training example S � {x1, . . . , xm}, the
straightforward method is MLE

L(θ) �

m∑
i�1

log q(xi ; θ)

�

m∑
i�1

log
(
α ·N(xi ; µ1,Σ1)

+(1 − α) ·N(xi ; µ2,Σ2)
)

(34)

I Learning: θ← argmaxθ′ L(θ′)
29



Singularity in GMM Parameter Estimation

Singularity happens when one of the mixture component
only captures a single data point, which eventually leads
the (log-)likelihood to∞

I It is easy to overfit the training set using GMMs, for
example when K � m

I This issue does not exist when estimating parameters
for a single Gaussian distribution
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Gradient-based Learning

Recall the definition of L(θ)

L(θ) �
m∑

i�1
log

(
α ·N(xi ; µ1,Σ1)+(1−α)·N(xi ; µ2,Σ2)

)
(35)

I There is no closed form solution of ∇L(θ) � 0
I E.g., the value of α depends on {µc ,Σc}2c�1, vice versa

I Gradient-based learning is still feasible as

θ(new)← θ(old) + η · ∇L(θ)
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Latent Variable Models

To rewrite equation 33 into a full probabilistic form, we
introduce a random variable z ∈ {1, 2}, with

q(z � 1) � α q(z � 2) � 1 − α (36)

or
q(z) � αδ(z�1)(1 − α)δ(z�2) (37)

I z is a random variable and indicates the mixture
component for x (a similar role as y in the
classification problem)

I z is not directly observed in the data, therefore it is a
latent (random) variable.
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GMM with Latent Variable

With latent variable z, we can rewrite the probabilistic
model as a joint distribution over x and z

q(x , z) � q(z)q(x | z)
� αδ(z�1) ·N(x; µ1,Σ1)δ(z�1)

· (1 − α)δ(z�2) ·N(x; µ2,Σ2)δ(z�2) (38)

And the marginal probability p(x) is the same as in
equation 33

q(x) � q(z � 1)q(x | z � 1) + q(z � 2)q(x | z � 2)
� α ·N(x; µ1,Σ1) + (1 − α) ·N(x; µ2,Σ2) (39)
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Parameter Estimation: MLE?

For each xi , we introduce a latent variable zi as mixture
component indicator, then the log likelihood is defined as

`(θ) �

m∑
i�1

log q(xi , zi)

�

m∑
i�1

log
{
αδ(zi�1) ·N(xi ; µ1 ,Σ1)δ(zi�1)

· (1 − α)δ(zi�2) ·N(xi ; µ2 ,Σ2)δ(zi�2)} (40)

�

m∑
i�1

{
δ(zi � 1) log α + δ(zi � 1) logN(xi ; µ1 ,Σ1)

δ(zi � 2) log(1 − α) + δ(zi � 2) logN(xi ; µ2 ,Σ2)
}

Question: we have already know that zi is a random
variable, but E [zi � 1] � α?
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EM Algorithm



Basic Idea

I The key challenge of GMMwith latent variables is
that we do not know the distributions of {zi}

I The basic idea of the EM algorithm is to alternatively
address the challenge between

{zi}mi�1⇔ θ � {α, µ1,Σ1, µ2,Σ2} (41)

I Basic procedure
1. Fix θ, estimate the distributions of {zi}mi�1
2. Fix the distribution of {zi}mi�1, estimate the value of θ
3. Go back to step 1
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How to Estimate zi?

Fix θ, we can estimate the distribution of each zi as (with
equation 38 and 39)

q(zi | xi) �
q(xi , zi)

q(xi)
(42)

Particularly, we have

q(zi � 1 | xi) �
α ·N(xi ; µ1,Σ1)

α ·N(xi ; µ1,Σ1) + (1 − α) ·N(xi ; µ2,Σ2)
(43)
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Expectation

Let γi be the expectation of zi under the distribution of
q(zi | xi)

E [zi] � γi (44)

I Since zi is a Bernoulli random variable, we also have
q(zi � 1 | xi) � γi

I Furthermore, the expectation of δ(zi � 1) under the
distribution of q(zi | xi)

E [δ(zi � 1)] � δ(zi � 1) · q(zi � 1 | xi)
+δ(zi � 1) · q(zi � 2 | xi)

� q(zi � 1) � γi (45)
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Parameter Estimation (I)

Given

`(θ) �
m∑

i�1

{
δ(zi � 1) log α + δ(zi � 1) logN(xi ; µ1 ,Σ1)

δ(zi � 2) log(1 − α) + δ(zi � 2) logN(xi ; µ2 ,Σ2)
} (46)

To maximize `(θ)with respect to α we have
m∑

i�1

{ δ(zi � 1)
α

− δ(zi � 2)
1 − α

}
� 0 (47)

and

α | z �

∑m
i�1 δ(zi � 1)∑m

i�1(δ(zi � 1) + δ(zi � 2)) �
∑m

i�1 δ(zi � 1)
m

(48)

which is similar to the classification example, except that
zi is a random variable
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Parameter Estimation (II)

Without going through the details, the estimate of mean
and covariance take the similar forms. For example, for the
first component, we have

µ1 | z �
1
m

m∑
i�1

δ(zi � 1)xi (49)

Σ1 | z �
1
m

m∑
i�1

δ(zi � 1)(xi − µ1)(xi − µ1)T (50)

Question: how to eliminate the randomness in α, µ1, Σ1
(and similarly in µ2, Σ2)?
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Expectation (II)

With E [δ(zi � 1)] � γi , we have

α � E [α | z] � 1
m

m∑
i�1

E [δ(zi � 1)] xi

�
1
m

m∑
i�1

γixi (51)

Similarly, we have

µ1 �
1
m

m∑
i�1

γi xi µ2 �
1
m

m∑
i�1
(1 − γi)xi

Σ1 �
1
m

m∑
i�1

γi(xi − µ1)(xi − µ1)T

Σ2 �
1
m

m∑
i�1
(1 − γi)(xi − µ2)(xi − µ2)T (52)
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The EM Algorithm, Review

The algorithm iteratively run the following two steps:

E-step Given θ, for each xi , estimate the distribution
of the corresponding latent variable zi

q(zi | xi) �
q(xi , zi)

q(xi)
(53)

and its expectation γi

M-step Given {zi}mi�1, maximize the log-likelihood
function `(θ) and estimate the parameter θ
with {γi}mi�1

42



Illustration

[Bishop, 2006, Page 437]
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Variational Inference (Optional)



The Computation of q(z | x)

I In the previous example, we were able to compute
the analytic solution of q(z | x) as

q(z | x) �
q(x , z)
q(x) (54)

where q(x) � ∑
z q(x , z)

I Challenge: Unlike the simple case in GMMs, usually
q(x) is difficult to compute

q(x) �

∑
z

q(x , z) discrete (55)

�

∫
z

q(x , z)dz continuous (56)
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Solution

I Instead of computing q(x) and then q(z | x), we
propose another distribution q′(z | x) to approximate
q(z | x)

q′(z | x) ≈ q(z | x) (57)
where q′(z | x) should be simple enough to facilitate
the computation

I The objective of finding a good approximation is the
Kullback–Leibler (KL) divergence

KL(q′‖q) �

∑
z

q′(z | x) log
q′(z | x)
q(z | x) discrete

�

∫
z

q′(z | x) log
q′(z | x)
q(z | x) dz continuous
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KL Divergence

I KL(q′‖q) ≥ 0 and the equality holds if and only if
q′ � q

I Consider the continuous case for the visualization
purpose.

KL(q′‖q) �
∫

z
q′(z | x) log

q′(z | x)
q(z | x) dz (58)

I Regardless what q(z | x) looks like, we decide to
define q′(z | x) for simplicity

I Because of q(z | x) in equation 58, the challenge still
exists
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ELBo

The learning objective for q′(z | x) is

KL(q′‖q) �

∫
z

q′(z | x) log
q′(z | x)
q(z | x) dz

�

∫
z

q′(z | x) log
q′(z | x)q(x)

q(z , x) dz

�

∫
z

q′(z | x) log
q′(z | x)q(x)
q(x | z)q(z) dz

�

∫
z

q′(z | x)
{
− log q(x | z) + log

q′(z | x)
q(z) + log q(x)

}
dz

� −E
[
log q(x | z)

]
+ KL(q′(z | x)‖q(z)) + log q(x)

� −ELBo + log q(x)

Minimize KL(q′‖q) is equivalent to maximize the
Evidence Lower Bound (ELBo)
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