CS 6316 Machine Learning

Neural Networks

Yangfeng Ji

Department of Computer Science
University of Virginia

il URRERITY | ENGINEERING

Overview

1. From Logistic Regression to Neural Networks
2. Expressive Power of Neural Networks
3. Learning Neural Networks

4. Computation Graph

From Logistic Regression to Neu-
ral Networks

Logistic Regression

» An unified form for y € {-1, +1}

1
1+ exp(—(w, x))

p(Y = +1 | x) = (1)

Logistic Regression

» An unified form for y € {-1, +1}

1
1+ exp(—(w, x))

p(Y = +1 | x) = (1)

» The sigmoid function o(a) witha € R

1

ola) = 1+ exp(—a)

Graphical Representation

» A specific example of LR

4
p(Y =1]2) =0() wjx.)) (3)

j=1

» The graphical representation of this LR model is

Input Output
layer layer
X1
X2 \
e

3&37

X4

Capacity of a LR

Logistic regression gives a linear decision boundary

X2

\
ANEES
N\

From LR to Neural Networks

Build upon logistic regression, a simple neural network
can be constructed as

d
2 = o) wpix,) kelK] @)
j=1
K
Ply=1]x) = o) wz) 5)
k=1

» x € R?: d-dimensional input
» y € {-1, +1} (binary classification problem)

From LR to Neural Networks

Build upon logistic regression, a simple neural network
can be constructed as

d
2 = o) wpix,) kelK] @)
j=1
K
Ply=1]x) = o) wz) 5)
k=1

» x € R?: d-dimensional input

» y € {-1, +1} (binary classification problem)

> {w](cll)} and { wl(co)} are two sets of the parameters, and
» K is the number of hidden units, each of them has the

same form as a LR.

Mathematical Formulation

» Element-wise formulation

d
Zi O—(ng;x,j) ke[K] (6)
j=1

K
Ply=+11x) = o() wz) (7)
k=1

Mathematical Formulation

» Element-wise formulation

d
zp = O—(ng;x,j) kelK] (6)

j=1

K
Ply=+11x) = o() wz) (7)

k=1

» Matrix-vector formulation

z = o(WWx) (8)
Py=+1]x) = o((w")z) (9)

where W) € RKX4 and wl©) € RK

Graphical Representation

Input Hidden Output

layer layer

x1

» Depth: 2 (two-layer neural network)
» Width: 5 (the maximal number of units in each layer)

Hypothesis Space

The hypothesis space of neural networks is usually
defined by the architecture of the network, which includes

» the nodes in the network,
» the connections in the network, and
» the activation function (e.g., o)

Input Hidden Output
layer lﬁr layer

X.1

Ny
N
O\,
—
/

Other Activation Functions

(a) Sign function

10

Other Activation Functions

(a) Sign function (b) Tanh function

10

Other Activation Functions

(a) Sign function (b) Tanh function

(c) ReLU function

[Jarrett et al., 2009] °

Another Network/Hypothesis Space

Simply increasing the number of layers or increase the
number of hidden units, we can create another hypothesis
space

Input Hidden Hidden Output

r layer layer

layer 1
A

11

Expressive Power of Neural Net-
works

Two-layer NNs with Sign Function

Consider a neural network defined by the following

functions
d
Zx = sign(Zwl(i;x.lj) k € [K] (10)
j=1
K
hix) = sign(Zwl(co)zk) (11)
k=1

where sign(a) is the sign function.

13

Two-layer NNs with Sign Function

Consider a neural network defined by the following

functions
d
Zx = sign(Zwl(i;x.lj) k € [K] (10)
j=1
K
hix) = sign(Zwl(co)zk) (11)
k=1

where sign(a) is the sign function.
h(x) can be rewritten as

K d
h(x) = sign Z w,(co) : sign(Z wl((lll).x.,j) (12)
P =

13

Decision Boundary

h(x) is defined by a combination of K linear predictors

X2

A
N\

7
/ N\

Similar conclusion applies to other activation functions.

[Shalev-Shwartz and Ben-David, 2014, Page 274]
14

Universal Approximation Theorem

Restrict the inputs x. ; € {1, +1}Vj € [d] as binary

Universal Approximation Theorem

For every d, there exists a two-layer neural network

(Equations 10 — 11), such that this hypothesis space
contains all functions from {-1, +1}% to {-1, +1}

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]

Universal Approximation Theorem

Restrict the inputs x. ; € {1, +1}Vj € [d] as binary

Universal Approximation Theorem

For every d, there exists a two-layer neural network

(Equations 10 — 11), such that this hypothesis space
contains all functions from {-1, +1}% to {-1, +1}

» The minimal size of network that satisfies the
theorem is exponential in d

» Similar results hold for o as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]

Learning Neural Networks

Neural Network Predictions

Consider a binary classification problem with
Y ={-1,+1},

> A two-layer neural network gives the following
prediction as

PY=+1|x)=0 ((w("))To(W(l)x)) (13)

where {w'®), WD} are the parameters

17

Neural Network Predictions

Consider a binary classification problem with
Y ={-1,+1},
> A two-layer neural network gives the following
prediction as

PY=+1|x)=0 ((w("))To(W(l)x)) (13)

where {w'®), WD} are the parameters
» Assume the ground-truth label is y, let’s introduce an
empirical distribution

= =) L Y=Y
i =vi=aw,m={o 170

17

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q,p) = —q(Y=+1]x)logp(Y =+1|x)
—q(Y =-1]|x)logp(Y =-1|x) (15)

18

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(g,p) = —q(¥=+1]|x)logp(Y =+1|x)
—q(Y=-1|x)logp(Y =-1|x) (15)
Since g is defined with a Delta function, Depending on v,
we have

—logp(Y=4+1]x) Y=+1

Hig.p) = { —logp(Y=-1]x) Y=-1 (16)

18

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q,p) = —q(Y=+1]x)logp(Y =+1|x)
—q(Y =-1]|x)logp(Y =-1|x) (15)

Since g is defined with a Delta function, Depending on v,
we have
—logp(Y=4+1]x) Y=+1

Hq.p) = { —logp(Y=-1]x) Y=-1 (16)

It is equivalent to the negative log-likelihood (NLL)

function used in learning LR.
18

ERM

» Given a set of training example S = {(x;, y;)}?il, the
loss function is defined as

L(0) = - > logp(yi | xi) (17)
i=1

where 0 indicates all the parameters in a network.

19

ERM

» Given a set of training example S = {(x;, y;)}?il, the
loss function is defined as

m
L(0) ==) logp(yi | x) (17)
i=1
where 0 indicates all the parameters in a network.

> For example, 0 = {w(®), W}, for the previously
defined two-layer neural network

19

ERM

» Given a set of training example S = {(x;, y;)}?il, the
loss function is defined as

L(0) = - > logp(yi | xi) (17)
i=1

where 0 indicates all the parameters in a network.

> For example, 0 = {w(®), W}, for the previously
defined two-layer neural network

» Just like learning a LR, we can use gradient-based
learning algorithm

19

Gradient-based Learning

A simple scratch of gradient-based learning!

IL(0)

1. Compute the gradient of 6, —,

More detail will be discussed in the next lecture
20

Gradient-based Learning

A simple scratch of gradient-based learning!

IL(0)
T

2. Update the parameter with the gradient

1. Compute the gradient of 0

IL(6)

(new) (old) _
0 <0 790 lo=gowa

(18)

where 1) is the learning rate

More detail will be discussed in the next lecture
20

Gradient-based Learning

A simple scratch of gradient-based learning!

) IL(0)
1. Compute the gradient of 6, —5=

2. Update the parameter with the gradient

IL(6)

(new) (old) _
0 <0 790 lo=gowa

(18)

where 1) is the learning rate

3. Go back step 1 until it converges

More detail will be discussed in the next lecture
20

Gradient Computation

Consider the two-layer neural network with one training
example (x, y), to further simplify the computation, we
assume y = +1

logp(y | x) =logo ((w(o))Ta(W(l)x)) (19)

21

Gradient Computation

Consider the two-layer neural network with one training
example (x, y), to further simplify the computation, we

assume y = +1

logp(y | x) =logo ((w(o))Ta(W(l)x)) (19)

The gradient with respect to w'®) is

8L(0) _ _alOgU(.) . aU((w(U))TG(W(l)X)) . a(w(o))TO_(w(l)x)
dw') 80(_) A(w©))Tg(Whx) dw')

(20)

21

Gradient Computation

Consider the two-layer neural network with one training
example (x, y), to further simplify the computation, we

assume y = +1

logp(y | x) =logo ((w(o))Ta(W(l)x)) (19)

The gradient with respect to w'®) is

8L(0) _ _alog U(.) . aU((w(U))TG(W(l)X)) . a(w(o))TO_(w(l)x)
dw') _ A(w©))Tg(Whx) dw')
80()

= —{1-0 (@) oW x) | - o (W) (20)

which is in the similar form as the LR updating equation.

21

Gradient Computation (lI)

The gradient with respect to W) is

JL(0) 310%67(-) 80((w("))Ta(w<1>x))
dw'©) - - 86(') . A(w©)Tg(Whx)

.8(w(°))Ta(W(1)x) ‘ da(Whx) oWy
do(Whx) OWDy gWD

21)

22

Gradient Computation (lI)

The gradient with respect to W) is

JL(0) 310%67(-) 80((w("))To(w<1>x))
dw'©) - - 86(') . A(w©)Tg(Whx)

.8(w(°))Ta(W(1)x) ‘ da(Whx) oWy
do(Whx) OWDy gWD

21)

> Both of them are the applications of the chain rule in
calculus plus some derivatives of basic functions

» In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

22

Computation Graph

Forward Operations

Consider the example of a two-layer neural network
P(Y=+4+1|x)=0 ((w(o))Ta(W(l)x)) (22)

A neural network is a composition of some basic functions
and operations. For example

> o)
> matrix transpose (w'®)T

> matrix-vector multiplication W()x

24

Forward Graph

The computation graph of the two-layer neural network?

p(Y | x)

w0 — (w(o))Tz

wih — w5

1

X

25

2For simplicity, the transpose operation is ienored from the graph

Backward Operations

Similarly, the gradient of neural network parameters are
computed with a series of backward operations associated
with the derivative of some basic function. For example

> 220 — 5(x)(1 - o (x))

da'x _
» e
dlog(x) _

1

p 29V _ 1
ox X
X

T

IWx _
» o =

26

Backward Graph

With the chain rule, gradient of the loss function with
respect to any parameter can be computed backward
step-by-step along the path

—logp(Y | x)
' do

H_

L) 2)
w0 <-- (w(o))Tz
dw'© :

do

i

oW - x)

WD «-- WD . 4
oW

X I

27

Computation Graph

Perform the forward /backward step with a graph of basic
operations (e.g., PyTorch, Tensorflow)

p(Y | x) —logp(Y | x)

' do

o]

. A(w©)Tz)

- (onT
w g @ |

' do

o]

: WD . x)
1) ¢--| 1
W g Wi

X

28

Computation Graph

Perform the forward /backward step with a graph of basic
operations (e.g., PyTorch, Tensorflow)
p(Y %) ~logp(Y | x)

. A(w©)Tz)

- (oNT

» Modular implementation: implement each module

with its forward /backward operations together

> Automatic differentiation: automatically run with the

hackward <ten

What is Deep Learning?

Definition

Deep Learning is building a system by assembling
parameterized modules into a (possibly dynamic)
computation graph, and training it to perform a task by
optimizing the parameters using a gradient-based
method.

[LeCun, 2020, AAAI 2020 Keynote]

29

Reference

) B =

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009).
What is the best multi-stage architecture for object recognition?
In Proceedings of the 12th International Conference on Computer Vision, pages 2146-2153. IEEE.

LeCun, Y. (2020).
Self-supervised learning.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323(6088):533-536.

Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding machine learning: From theory to algorithms.
Cambridge university press.

30

	Overview
	From Logistic Regression to Neural Networks
	Expressive Power of Neural Networks
	Learning Neural Networks
	Computation Graph

