
CS 6316 Machine Learning
Neural Networks

Yangfeng Ji

Department of Computer Science
University of Virginia

Overview

1. From Logistic Regression to Neural Networks

2. Expressive Power of Neural Networks

3. Learning Neural Networks

4. Computation Graph

1

From Logistic Regression to Neu-
ral Networks

Logistic Regression

I An unified form for y ∈ {−1,+1}

p(Y � +1 | x) � 1
1 + exp(−〈w , x〉) (1)

I The sigmoid function σ(a)with a ∈ R

σ(a) � 1
1 + exp(−a) (2)

3

Logistic Regression

I An unified form for y ∈ {−1,+1}

p(Y � +1 | x) � 1
1 + exp(−〈w , x〉) (1)

I The sigmoid function σ(a)with a ∈ R

σ(a) � 1
1 + exp(−a) (2)

3

Graphical Representation

I A specific example of LR

p(Y � 1 | x) � σ(
4∑

j�1
w j x·, j) (3)

I The graphical representation of this LR model is

x1

x2

x3

x4

Input
layer

y

Output
layer

4

Capacity of a LR

Logistic regression gives a linear decision boundary

x1

x2

5

From LR to Neural Networks

Build upon logistic regression, a simple neural network
can be constructed as

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (4)

P(y � 1 | x) � σ(
K∑

k�1

w(o)k zk) (5)

I x ∈ Rd : d-dimensional input
I y ∈ {−1,+1} (binary classification problem)

I {w(1)k ,i} and {w
(o)
k } are two sets of the parameters, and

I K is the number of hidden units, each of them has the
same form as a LR.

6

From LR to Neural Networks

Build upon logistic regression, a simple neural network
can be constructed as

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (4)

P(y � 1 | x) � σ(
K∑

k�1

w(o)k zk) (5)

I x ∈ Rd : d-dimensional input
I y ∈ {−1,+1} (binary classification problem)
I {w(1)k ,i} and {w

(o)
k } are two sets of the parameters, and

I K is the number of hidden units, each of them has the
same form as a LR.

6

Mathematical Formulation

I Element-wise formulation

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (6)

P(y � +1 | x) � σ(
K∑

k�1

w(o)k zk) (7)

I Matrix-vector formulation

z � σ(W(1)x) (8)
P(y � +1 | x) � σ((w(o))Tz) (9)

where W(1) ∈ RK×d and w(o) ∈ RK

7

Mathematical Formulation

I Element-wise formulation

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (6)

P(y � +1 | x) � σ(
K∑

k�1

w(o)k zk) (7)

I Matrix-vector formulation

z � σ(W(1)x) (8)
P(y � +1 | x) � σ((w(o))Tz) (9)

where W(1) ∈ RK×d and w(o) ∈ RK
7

Graphical Representation

x·,1

x·,2

x·,3

x·,4

Input
layer z1

z2

z3

z4

z5

Hidden
layer

y

Output
layer

I Depth: 2 (two-layer neural network)
I Width: 5 (the maximal number of units in each layer)

8

Hypothesis Space

The hypothesis space of neural networks is usually
defined by the architecture of the network, which includes

I the nodes in the network,
I the connections in the network, and
I the activation function (e.g., σ)

x·,1

x·,2

x·,3

x·,4

Input
layer z1

z2

z3

z4

z5

Hidden
layer

y

Output
layer

9

Other Activation Functions

(a) Sign function

(b) Tanh function

(c) ReLU function
[Jarrett et al., 2009]

10

Other Activation Functions

(a) Sign function (b) Tanh function

(c) ReLU function
[Jarrett et al., 2009]

10

Other Activation Functions

(a) Sign function (b) Tanh function

(c) ReLU function
[Jarrett et al., 2009] 10

Another Network/Hypothesis Space

Simply increasing the number of layers or increase the
number of hidden units, we can create another hypothesis
space

x·,1

x·,2

x·,3

x·,4

Input
layer

Hidden
layer

Hidden
layer

y

Output
layer

11

Expressive Power of Neural Net-
works

Two-layer NNs with Sign Function

Consider a neural network defined by the following
functions

zk � sign(
d∑

j�1
w(1)k , jx·, j) k ∈ [K] (10)

h(x) � sign(
K∑

k�1

w(o)k zk) (11)

where sign(a) is the sign function.

h(x) can be rewritten as

h(x) � sign ©­«
K∑

k�1

w(o)k · sign(
d∑

j�1
w(1)k ,i x·, j)

ª®¬ (12)

13

Two-layer NNs with Sign Function

Consider a neural network defined by the following
functions

zk � sign(
d∑

j�1
w(1)k , jx·, j) k ∈ [K] (10)

h(x) � sign(
K∑

k�1

w(o)k zk) (11)

where sign(a) is the sign function.

h(x) can be rewritten as

h(x) � sign ©­«
K∑

k�1

w(o)k · sign(
d∑

j�1
w(1)k ,i x·, j)

ª®¬ (12)

13

Decision Boundary

h(x) is defined by a combination of K linear predictors

x1

x2

Similar conclusion applies to other activation functions.

[Shalev-Shwartz and Ben-David, 2014, Page 274]
14

Universal Approximation Theorem

Restrict the inputs x·, j ∈ {−1,+1}∀ j ∈ [d] as binary

Universal Approximation Theorem
For every d, there exists a two-layer neural network
(Equations 10 – 11), such that this hypothesis space
contains all functions from {−1,+1}d to {−1,+1}

I The minimal size of network that satisfies the
theorem is exponential in d

I Similar results hold for σ as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]
15

Universal Approximation Theorem

Restrict the inputs x·, j ∈ {−1,+1}∀ j ∈ [d] as binary

Universal Approximation Theorem
For every d, there exists a two-layer neural network
(Equations 10 – 11), such that this hypothesis space
contains all functions from {−1,+1}d to {−1,+1}

I The minimal size of network that satisfies the
theorem is exponential in d

I Similar results hold for σ as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]
15

Learning Neural Networks

Neural Network Predictions

Consider a binary classification problem with
Y� {−1,+1},

I A two-layer neural network gives the following
prediction as

P(Y � +1 | x) � σ
(
(w(o))Tσ(W(1)x)

)
(13)

where {w(o),W(1)} are the parameters

I Assume the ground-truth label is y, let’s introduce an
empirical distribution

q(Y � y′ | x) � δ(y′, y) �
{

1 y′ � y
0 y′ , y

(14)

17

Neural Network Predictions

Consider a binary classification problem with
Y� {−1,+1},

I A two-layer neural network gives the following
prediction as

P(Y � +1 | x) � σ
(
(w(o))Tσ(W(1)x)

)
(13)

where {w(o),W(1)} are the parameters
I Assume the ground-truth label is y, let’s introduce an

empirical distribution

q(Y � y′ | x) � δ(y′, y) �
{

1 y′ � y
0 y′ , y

(14)

17

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q , p) � −q(Y � +1 | x) log p(Y � +1 | x)
−q(Y � −1 | x) log p(Y � −1 | x) (15)

Since q is defined with a Delta function, Depending on y,
we have

H(q , p) �
{
− log p(Y � +1 | x) Y � +1
− log p(Y � −1 | x) Y � −1

(16)

It is equivalent to the negative log-likelihood (NLL)
function used in learning LR.

18

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q , p) � −q(Y � +1 | x) log p(Y � +1 | x)
−q(Y � −1 | x) log p(Y � −1 | x) (15)

Since q is defined with a Delta function, Depending on y,
we have

H(q , p) �
{
− log p(Y � +1 | x) Y � +1
− log p(Y � −1 | x) Y � −1

(16)

It is equivalent to the negative log-likelihood (NLL)
function used in learning LR.

18

Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q , p) � −q(Y � +1 | x) log p(Y � +1 | x)
−q(Y � −1 | x) log p(Y � −1 | x) (15)

Since q is defined with a Delta function, Depending on y,
we have

H(q , p) �
{
− log p(Y � +1 | x) Y � +1
− log p(Y � −1 | x) Y � −1

(16)

It is equivalent to the negative log-likelihood (NLL)
function used in learning LR.

18

ERM

I Given a set of training example S � {(xi , yi)}mi�1, the
loss function is defined as

L(θ) � −
m∑

i�1
log p(yi | xi) (17)

where θ indicates all the parameters in a network.

I For example, θ � {w(o),W(1)}, for the previously
defined two-layer neural network

I Just like learning a LR, we can use gradient-based
learning algorithm

19

ERM

I Given a set of training example S � {(xi , yi)}mi�1, the
loss function is defined as

L(θ) � −
m∑

i�1
log p(yi | xi) (17)

where θ indicates all the parameters in a network.
I For example, θ � {w(o),W(1)}, for the previously

defined two-layer neural network

I Just like learning a LR, we can use gradient-based
learning algorithm

19

ERM

I Given a set of training example S � {(xi , yi)}mi�1, the
loss function is defined as

L(θ) � −
m∑

i�1
log p(yi | xi) (17)

where θ indicates all the parameters in a network.
I For example, θ � {w(o),W(1)}, for the previously

defined two-layer neural network
I Just like learning a LR, we can use gradient-based

learning algorithm

19

Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of θ, ∂L(θ)
∂θ

2. Update the parameter with the gradient

θ(new)← θ(old) − η · ∂L(θ)
∂θ

���
θ�θ(old)

(18)

where η is the learning rate
3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
20

Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of θ, ∂L(θ)
∂θ

2. Update the parameter with the gradient

θ(new)← θ(old) − η · ∂L(θ)
∂θ

���
θ�θ(old)

(18)

where η is the learning rate

3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
20

Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of θ, ∂L(θ)
∂θ

2. Update the parameter with the gradient

θ(new)← θ(old) − η · ∂L(θ)
∂θ

���
θ�θ(old)

(18)

where η is the learning rate
3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
20

Gradient Computation

Consider the two-layer neural network with one training
example (x , y), to further simplify the computation, we
assume y � +1

log p(y | x) � log σ
(
(w(o))Tσ(W(1)x)

)
(19)

The gradient with respect to w(o) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

· ∂(w
(o))Tσ(W(1)x)
∂w(o)

� −
{
1 − σ

(
(w(o))Tσ(W(1)x)

) }
· σ(W(1)x)

(20)

which is in the similar form as the LR updating equation.

21

Gradient Computation

Consider the two-layer neural network with one training
example (x , y), to further simplify the computation, we
assume y � +1

log p(y | x) � log σ
(
(w(o))Tσ(W(1)x)

)
(19)

The gradient with respect to w(o) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

· ∂(w
(o))Tσ(W(1)x)
∂w(o)

� −
{
1 − σ

(
(w(o))Tσ(W(1)x)

) }
· σ(W(1)x)

(20)

which is in the similar form as the LR updating equation.

21

Gradient Computation

Consider the two-layer neural network with one training
example (x , y), to further simplify the computation, we
assume y � +1

log p(y | x) � log σ
(
(w(o))Tσ(W(1)x)

)
(19)

The gradient with respect to w(o) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

· ∂(w
(o))Tσ(W(1)x)
∂w(o)

� −
{
1 − σ

(
(w(o))Tσ(W(1)x)

) }
· σ(W(1)x) (20)

which is in the similar form as the LR updating equation.
21

Gradient Computation (II)

The gradient with respect to W (1) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

·∂(w
(o))Tσ(W(1)x)
∂σ(W(1)x)

· ∂σ(W
(1)x)

∂W(1)x
· ∂W(1)x
∂W(1)

(21)

I Both of them are the applications of the chain rule in
calculus plus some derivatives of basic functions

I In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

22

Gradient Computation (II)

The gradient with respect to W (1) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

·∂(w
(o))Tσ(W(1)x)
∂σ(W(1)x)

· ∂σ(W
(1)x)

∂W(1)x
· ∂W(1)x
∂W(1)

(21)

I Both of them are the applications of the chain rule in
calculus plus some derivatives of basic functions

I In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]

22

Computation Graph

Forward Operations

Consider the example of a two-layer neural network

P(Y � +1 | x) � σ
(
(w(o))Tσ(W(1)x)

)
(22)

A neural network is a composition of some basic functions
and operations. For example

I σ(·)
I matrix transpose (w(o))T

I matrix-vector multiplication W(1)x

24

Forward Graph

The computation graph of the two-layer neural network2

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

p(Y | x)

2For simplicity, the transpose operation is ignored from the graph
25

Backward Operations

Similarly, the gradient of neural network parameters are
computed with a series of backward operations associated
with the derivative of some basic function. For example

I ∂σ(x)
∂x � σ(x)(1 − σ(x))

I ∂aTx
∂x � a

I ∂ log(x)
∂x �

1
x

I ∂Wx
∂x �


xT

...

xT


26

Backward Graph

With the chain rule, gradient of the loss function with
respect to any parameter can be computed backward
step-by-step along the path

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

− log p(Y | x)

∂(W(1) · x)

∂σ

∂((w(o))Tz)

∂σ

∂W(1)

∂w(o)

27

Computation Graph

Perform the forward/backward step with a graph of basic
operations (e.g., PyTorch, Tensorflow)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

p(Y | x)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

− log p(Y | x)

∂(W(1) · x)

∂σ

∂((w(o))Tz)

∂σ

∂W(1)

∂w(o)

I Modular implementation: implement each module
with its forward/backward operations together

I Automatic differentiation: automatically run with the
backward step

28

Computation Graph

Perform the forward/backward step with a graph of basic
operations (e.g., PyTorch, Tensorflow)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

p(Y | x)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

− log p(Y | x)

∂(W(1) · x)

∂σ

∂((w(o))Tz)

∂σ

∂W(1)

∂w(o)

I Modular implementation: implement each module
with its forward/backward operations together

I Automatic differentiation: automatically run with the
backward step

28

What is Deep Learning?

Definition
Deep Learning is building a system by assembling
parameterized modules into a (possibly dynamic)
computation graph, and training it to perform a task by
optimizing the parameters using a gradient-based
method.

[LeCun, 2020, AAAI 2020 Keynote]

29

Reference

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009).
What is the best multi-stage architecture for object recognition?
In Proceedings of the 12th International Conference on Computer Vision, pages 2146–2153. IEEE.

LeCun, Y. (2020).
Self-supervised learning.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323(6088):533–536.

Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding machine learning: From theory to algorithms.
Cambridge university press.

30

	Overview
	From Logistic Regression to Neural Networks
	Expressive Power of Neural Networks
	Learning Neural Networks
	Computation Graph

