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From Logistic Regression to Neu-
ral Networks



Logistic Regression

I An unified form for y ∈ {−1,+1}

p(Y � +1 | x) � 1
1 + exp(−〈w , x〉) (1)

I The sigmoid function σ(a)with a ∈ R

σ(a) � 1
1 + exp(−a) (2)

3



Logistic Regression

I An unified form for y ∈ {−1,+1}

p(Y � +1 | x) � 1
1 + exp(−〈w , x〉) (1)

I The sigmoid function σ(a)with a ∈ R

σ(a) � 1
1 + exp(−a) (2)

3



Graphical Representation

I A specific example of LR

p(Y � 1 | x) � σ(
4∑

j�1
w j x·, j) (3)

I The graphical representation of this LR model is
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Capacity of a LR

Logistic regression gives a linear decision boundary
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x2
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From LR to Neural Networks

Build upon logistic regression, a simple neural network
can be constructed as

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (4)

P(y � 1 | x) � σ(
K∑

k�1

w(o)k zk) (5)

I x ∈ Rd : d-dimensional input
I y ∈ {−1,+1} (binary classification problem)

I {w(1)k ,i} and {w
(o)
k } are two sets of the parameters, and

I K is the number of hidden units, each of them has the
same form as a LR.
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Mathematical Formulation

I Element-wise formulation

zk � σ(
d∑

j�1
w(1)k , j x·, j) k ∈ [K] (6)

P(y � +1 | x) � σ(
K∑

k�1

w(o)k zk) (7)

I Matrix-vector formulation

z � σ(W(1)x) (8)
P(y � +1 | x) � σ((w(o))Tz) (9)

where W(1) ∈ RK×d and w(o) ∈ RK
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Graphical Representation
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I Depth: 2 (two-layer neural network)
I Width: 5 (the maximal number of units in each layer)
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Hypothesis Space

The hypothesis space of neural networks is usually
defined by the architecture of the network, which includes

I the nodes in the network,
I the connections in the network, and
I the activation function (e.g., σ)
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Other Activation Functions

(a) Sign function

(b) Tanh function

(c) ReLU function
[Jarrett et al., 2009]
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Another Network/Hypothesis Space

Simply increasing the number of layers or increase the
number of hidden units, we can create another hypothesis
space
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Expressive Power of Neural Net-
works



Two-layer NNs with Sign Function

Consider a neural network defined by the following
functions

zk � sign(
d∑

j�1
w(1)k , jx·, j) k ∈ [K] (10)

h(x) � sign(
K∑

k�1

w(o)k zk) (11)

where sign(a) is the sign function.

h(x) can be rewritten as

h(x) � sign ©­«
K∑

k�1

w(o)k · sign(
d∑

j�1
w(1)k ,i x·, j)

ª®¬ (12)
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Decision Boundary

h(x) is defined by a combination of K linear predictors

x1

x2

Similar conclusion applies to other activation functions.

[Shalev-Shwartz and Ben-David, 2014, Page 274]
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Universal Approximation Theorem

Restrict the inputs x·, j ∈ {−1,+1}∀ j ∈ [d] as binary

Universal Approximation Theorem
For every d, there exists a two-layer neural network
(Equations 10 – 11), such that this hypothesis space
contains all functions from {−1,+1}d to {−1,+1}

I The minimal size of network that satisfies the
theorem is exponential in d

I Similar results hold for σ as the activation function

[Shalev-Shwartz and Ben-David, 2014, Section 20.3]
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Learning Neural Networks



Neural Network Predictions

Consider a binary classification problem with
Y� {−1,+1},

I A two-layer neural network gives the following
prediction as

P(Y � +1 | x) � σ
(
(w(o))Tσ(W(1)x)

)
(13)

where {w(o),W(1)} are the parameters

I Assume the ground-truth label is y, let’s introduce an
empirical distribution

q(Y � y′ | x) � δ(y′, y) �
{

1 y′ � y
0 y′ , y

(14)
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Cross Entropy

Given one data point, The loss function of a neural
network is usually defined as the cross entropy of the
prediction distribution p and the empirical distribution p

H(q , p) � −q(Y � +1 | x) log p(Y � +1 | x)
−q(Y � −1 | x) log p(Y � −1 | x) (15)

Since q is defined with a Delta function, Depending on y,
we have

H(q , p) �
{
− log p(Y � +1 | x) Y � +1
− log p(Y � −1 | x) Y � −1

(16)

It is equivalent to the negative log-likelihood (NLL)
function used in learning LR.
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ERM

I Given a set of training example S � {(xi , yi)}mi�1, the
loss function is defined as

L(θ) � −
m∑

i�1
log p(yi | xi) (17)

where θ indicates all the parameters in a network.

I For example, θ � {w(o),W(1)}, for the previously
defined two-layer neural network

I Just like learning a LR, we can use gradient-based
learning algorithm
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Gradient-based Learning

A simple scratch of gradient-based learning1

1. Compute the gradient of θ, ∂L(θ)
∂θ

2. Update the parameter with the gradient

θ(new)← θ(old) − η · ∂L(θ)
∂θ

���
θ�θ(old)

(18)

where η is the learning rate
3. Go back step 1 until it converges

1More detail will be discussed in the next lecture
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Gradient Computation

Consider the two-layer neural network with one training
example (x , y), to further simplify the computation, we
assume y � +1

log p(y | x) � log σ
(
(w(o))Tσ(W(1)x)

)
(19)

The gradient with respect to w(o) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

· ∂(w
(o))Tσ(W(1)x)
∂w(o)

� −
{
1 − σ

(
(w(o))Tσ(W(1)x)

) }
· σ(W(1)x)

(20)

which is in the similar form as the LR updating equation.
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Gradient Computation (II)

The gradient with respect to W (1) is

∂L(θ)
∂w(o)

� −
∂ log σ

(
·
)

∂σ
(
·
) ·

∂σ
(
(w(o))Tσ(W(1)x)

)
∂(w(o))Tσ(W(1)x)

·∂(w
(o))Tσ(W(1)x)
∂σ(W(1)x)

· ∂σ(W
(1)x)

∂W(1)x
· ∂W(1)x
∂W(1)

(21)

I Both of them are the applications of the chain rule in
calculus plus some derivatives of basic functions

I In the literature of neural networks, it is called the
back-propagation algorithm [Rumelhart et al., 1986]
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Computation Graph



Forward Operations

Consider the example of a two-layer neural network

P(Y � +1 | x) � σ
(
(w(o))Tσ(W(1)x)

)
(22)

A neural network is a composition of some basic functions
and operations. For example

I σ(·)
I matrix transpose (w(o))T

I matrix-vector multiplication W(1)x
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Forward Graph

The computation graph of the two-layer neural network2

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

p(Y | x)

2For simplicity, the transpose operation is ignored from the graph
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Backward Operations

Similarly, the gradient of neural network parameters are
computed with a series of backward operations associated
with the derivative of some basic function. For example

I ∂σ(x)
∂x � σ(x)(1 − σ(x))

I ∂aTx
∂x � a

I ∂ log(x)
∂x �

1
x

I ∂Wx
∂x �


xT

...

xT


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Backward Graph

With the chain rule, gradient of the loss function with
respect to any parameter can be computed backward
step-by-step along the path

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

− log p(Y | x)

∂(W(1) · x)

∂σ

∂((w(o))Tz)

∂σ

∂W(1)

∂w(o)
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Computation Graph

Perform the forward/backward step with a graph of basic
operations (e.g., PyTorch, Tensorflow)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

p(Y | x)

x

W(1) · xW(1)

σ

(w(o))Tzw(o)

σ

− log p(Y | x)

∂(W(1) · x)

∂σ

∂((w(o))Tz)

∂σ

∂W(1)

∂w(o)

I Modular implementation: implement each module
with its forward/backward operations together

I Automatic differentiation: automatically run with the
backward step
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What is Deep Learning?

Definition
Deep Learning is building a system by assembling
parameterized modules into a (possibly dynamic)
computation graph, and training it to perform a task by
optimizing the parameters using a gradient-based
method.

[LeCun, 2020, AAAI 2020 Keynote]
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