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About Online Lectures



Course Information Update

I Record the lectures and upload the videos on Collab
I By default, turn off the video and mute yourself
I If you have a question

I Unmuate yourself and chime in anytime
I Use the raise hand feature
I Send me a private message

I Slack: as a stable communication channel to
I send out instant messages if my network connection

is unreliable
I online discussion
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Course Information Update

I Homework
I Subject to change

I Final project
I Send out my feedback later this week
I Continue your collaboration with your teammates
I Presentation: record a presentation video and share it

with me
I Office hour

I Wednesday 11 AM: I will be on Zoom
I You can also send me an email or Slack message

anytime
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Separable Cases



Geometric Margin

The geometric margin of a linear binary classifier
h(x) � 〈w , x〉 + b at a point x is its distance to the
hyper-plane 〈w , x〉 � 0

ρh(x) �
|〈w , x〉 + b |
‖w‖2

(1)
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Geometric Margin (II)

The geometric margin of h(x) for a set of examples
T � {x1, . . . , xm} is the minimal distance over these
examples

ρh(T) � min
x′∈T

ρh(x′) (2)

[Mohri et al., 2018, Page 80]
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Half-Space Hypothesis Space

I Training set S � {(x1, y1), . . . , (xm , ym)} with xi ∈ Rd

and yi ∈ {+1,−1}
I If the training set is linearly separable

yi(〈w , xi〉 + b) > 0 ∀i ∈ [m] (3)

I Linearly separable cases
I Existence of equation 3
I All halfspace predictors that satisfy the condition in

equation 3 are ERM hypotheses
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Which Hypothesis is Better?

I Intuitively, a hypothesis with larger margin is better,
because it is more robust to noise

I Final definition of margin will be provided later

[Shalev-Shwartz and Ben-David, 2014, Page 203] 8
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Hard SVM/Separable Cases

The mathematical formulation of the previous idea

ρ � max
(w ,b)

min
i∈[m]

|〈w , xi〉 + b |
‖w‖2

(4)

s.t. yi(〈w , xi〉 + b) > 0 ∀i (5)

I yi(〈w , xi〉 + b) > 0 ∀i: guarantee (w , b) is an ERM
hypothesis

I mini∈[m]: calculate the margin between a hyper-plane
and a set of examples

I max(w ,b): maximize the margin
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Illustration

Original form

ρ � max
(w ,b)

min
i∈[m]

|〈w , xi〉 + b |
‖w‖2

(6)

s.t. yi(〈w , xi〉 + b) > 0 ∀i (7)
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Alternative Forms

I Original form

ρ � max
(w ,b)

min
i∈[m]

|〈w , xi〉 + b |
‖w‖2

(8)

s.t. yi(〈w , xi〉 + b) > 0 ∀i (9)

I Alternative form 1

ρ � max
(w ,b)

min
i∈[m]

yi(〈w , xi〉 + b)
‖w‖2

(10)

I Alternative form 2

ρ � max
(w ,b): mini∈[m] yi(〈w ,xi〉+b�1

1
‖w‖2

(11)

� max
(w ,b): yi(〈w ,xi〉+b≥1

1
‖w‖2

(12)
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Alternative Forms (II)

I Alternative form 2

ρ � max
(w ,b): yi(〈w ,xi〉+b≥1

1
‖w‖2

(13)

I Alternative form 3: Quadratic programming (QP)

min
(w ,b)

1
2 ‖w‖

2
2

s.t. yi(〈w , xi〉 + b) ≥ 1, ∀i ∈ [m]
(14)

which is a constrained optimization problem that can
be solved by standard QP packages

I Exercise: Solve a SVM problem with quadratic
programming

12
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Unconstrained Optimization Problem

The quadratic programming problem with constraints can
be converted to an unconstrained optimization problem
with the Lagrangian method

L(w , b , α) � 1
2 ‖w‖

2
2 −

m∑
i�1

αi(yi(〈w , xi〉 + b) − 1) (15)

where

I α � {α1, . . . , αm} is the Lagrange multiplier, and
I αi ≥ 0 is associated with the i-th training example

13



Constrained Optimization
Problems



Constrained Optimization Problems: Definition

I X⊆ Rd and
I f , gi : X→ R, ∀i ∈ [m]

Then, a constrained optimization problem is defined in
the form of

min
x∈X

f (x) (16)

s.t. gi(x) ≤ 0, ∀i ∈ [m] (17)

Comments

I In general definition, x is the target variable for
optimization

I Special cases of gi(x): (1) gi(x) � 0, (2) gi(x) ≥ 0, and
(3) gi(x) ≤ b
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Lagrangian

The Lagrangian associated to the general constrained
optimization problem defined in equation 16 – 17 is the
function defined over X×Rm

+ as

L(x , α) � f (x) +
m∑

i�1
αi gi(x) (18)

where

I α � (α1, . . . , αm) ∈ Rm
+

I αi ≥ 0 for any i ∈ [m]

16



Karush-Kuhn-Tucker’s Theorem

Assume that f , gi : X→ R, ∀i ∈ [m] are convex and
differentiable and that the constraints are qualified. Then
x′ is a solution of the constrained problem if and only if
there exist α′ ≥ 0 such that

∇xL(x′, α′) � ∇x f (x′) + α′ · ∇x g(x) � 0 (19)
∇αL(x , α) � g(x′) ≤ 0 (20)

α′ · g(x′) �

m∑
i�1

α′i gi(x′) � 0 (21)

Equations 19 – 21 are called KKT conditions

[Mohri et al., 2018, Thm B.30]
17



KKT in SVM

Apply the KKT conditions to the SVM problem

L(w , b , α) � 1
2 ‖w‖

2
2 −

m∑
i�1

αi(yi(〈w , xi〉 + b) − 1) (22)

We have

∇wL � w −
m∑

i�1
αi yixi � 0 ⇒ w �

m∑
i�1

αi yixi

∇bL � −
m∑

i�1
αi yi � 0 ⇒

m∑
i�1

αi yi � 0

∀i , αi(yi(〈w , xi〉 + b) − 1) � 0 ⇒ αi � 0 or yi(〈w , xi〉 + b) � 1
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Support Vectors

Consider the implication of the last equation in the
previous page, ∀i

I αi > 0 and
yi(〈w , xi〉 + b) � 1 or

I αi � 0 and
yi(〈w , xi〉 + b) ≥ 1

w �

m∑
i�1

αi yixi (23)

I Examples with αi > 0 are called support vectors
I In Rd , d + 1 examples are sufficient to define a

hyper-plane

19
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Non-separable Cases

Recall the separable case:

min
(w ,b)

1
2 ‖w‖

2
2

s.t. yi(〈w , xi〉 + b) ≥ 1, ∀i ∈ [m]
(24)

For non-separable cases, there always exists an xi , such
that

yi(〈w , xi〉 + b) � 1 (25)

or, we can formulate it as

yi(〈w , xi〉 + b) ≥ 1 − ξi (26)

with ξi ≥ 0

21
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Geometric Meaning of ξi

Consider the relaxed constraint

yi(〈w , xi〉 + b) ≥ 1 − ξi (27)

and three cases of ξi

I ξi � 0
I 0 < ξi < 1
I ξi ≥ 1

22



Non-separable Cases (II)

In general, the SVM problem of non-separable cases can
be formulated as

min
(w ,b)

1
2 ‖w‖

2
2 + C

m∑
i�1

ξ
p
i

s.t. yi(〈w , xi〉 + b) ≥ 1 − ξi , ∀i ∈ [m]
ξi ≥ 0

(28)

where C ≥ 0, p ≥ 1, and {ξi}mi�1 ≥ 0 are known as slack
variables and are commonly used in optimization to
define relaxed versions of constraints.

23



Lagrangian

Follows the same procedure as the separable cases, the
Lagrangian is defined as

L(w , b , ξ , α, β) �1
2 ‖w‖

2
2 + C

m∑
i�1

ξi

−
m∑

i�1
αi(yi(wTxi + b) − 1 + ξi)

−
m∑

i�1
βiξi

(29)

with αi , βi ≥ 0

Exercise: show the KKT conditions of equation 29

24



Lagrangian

Follows the same procedure as the separable cases, the
Lagrangian is defined as

L(w , b , ξ , α, β) �1
2 ‖w‖

2
2 + C

m∑
i�1

ξi

−
m∑

i�1
αi(yi(wTxi + b) − 1 + ξi)

−
m∑

i�1
βiξi

(29)

with αi , βi ≥ 0

Exercise: show the KKT conditions of equation 29
24



Support Vectors

The first two equations in the KKT conditions are similar
to the separable cases, and the rest are

αi + βi � C (30)
αi � 0 or yi(wTxi + b) � 1 − ξi (31)
βi � 0 or ξi � 0 (32)

Depending the value of ξi , there are two types of support
vectors

I ξi � 0: βi ≥ 0 and 0 < αi ≤ C
I xi may lie on the marginal hyper-planes (as in the

separable case)

I ξi > 0: βi � 0 and αi � C
I xi is an outlier

25
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Support Vectors (II)

Two types of support vectors

I αi � C: xi is an outlier
I 0 < αi < C: xi lies on the marginal hyper-planes

26



Dual Optimization Problem



Lagrangian

Combine the Lagrangian

L �
1
2 ‖w‖

2
2 −

m∑
i�1

αi[yi(〈w , xi〉 + b) − 1]

�
1
2 ‖w‖

2
2 −

m∑
i�1

αi yi 〈w , xi〉 − b
m∑

i�1
αi yi +

m∑
i�1

αi

with some of the KKT conditions

w �

m∑
i�1

αi yi xi (33)

m∑
i�1

αi yi � 0, (34)

we have ...
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Dual Problem

L �
1
2 ‖

m∑
i�1

αi yi xi ‖22 −
m∑

i�1

m∑
j�1

αiα j yi y j 〈xi , x j〉

− b
m∑

i�1
αi yi︸     ︷︷     ︸

�0

+

m∑
i�1

αi
(35)

Given ‖∑m
i�1 αi yi xi ‖22 �

∑m
i�1

∑m
j�1 αiα j yi y j 〈xi , x j〉, we

have

L � −1
2

m∑
i�1

m∑
j�1

αiα j yi y j 〈xi , x j〉 +
m∑

i�1
αi (36)
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Dual Problem (II)

The dual optimization problem for SVMs of the separable
cases is

max
α

m∑
i�1

αi −
1
2

m∑
i , j�1

αiα j yi y j 〈xi , x j〉 (37)

s.t. αi ≥ 0 (38)
m∑

i�1
αi yi � 0 ∀i ∈ [m] (39)

I Lagrange multiplier α is also called dual variable
I This is an optimization problem only about α

I The dual problem is defined on the inner product
〈xi , x j〉

30
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Primal and Dual Problem

I Primal problem

min
(w ,b)

1
2 ‖w‖

2
2

s.t. yi(〈w , xi〉 + b) ≥ 1, ∀i ∈ [m]
(40)

I Dual problem

max
α

m∑
i�1

αi −
1
2

m∑
i , j�1

αiα j yi y j 〈xi , x j〉

s.t.
m∑

i�1
αi yi � 0 and αi ≥ 0 ∀i ∈ [m]

(41)

I These two problems are equivalent

[Boyd and Vandenberghe, 2004, Chapter 5] 31



SVM Hypothesis, revisited

Once we solve the dual problem with α, we have the
solution of w as

w �

m∑
i�1

αi yixi (42)

and the hypothesis h(x) as
h(x) � sign(〈w , x〉 + b) (43)

� sign(〈
m∑

i�1
αi yi xi , x〉 + b) (44)

� sign(
m∑

i�1
αi yi 〈xi , x〉 + b)

(45)

Exercise: Prove b � yi −
∑m

i�1 αi yi 〈xi , x〉 for any xi with
αi > 0

32
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αi > 0 32



Kernel Methods



Properties of Inner Product

In the solution of SVMs

h(x) � sign(
m∑

i�1
αi yi 〈xi , x〉 + b)

b � yi −
m∑

i�1
αi yi 〈xi , x〉

(46)

Extend the capacity of SVMs by replacing the inner
product 〈xi , x〉 with a kernel function

K(xi , x) � 〈Φ(xi),Φ(x)〉 (47)

where Φ(·) is a nonlinear mapping function.
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Examples: Polynomial Kernels

For any constant c > 0, a polynomial kernel of degree
d ∈ N is the kernel K defined over Rn by

K(x , x′) � (〈x , x′〉 + c)d , ∀x , x′ ∈ Rn (48)

Special cases

I d � 1: K(x , x′) � 〈x , x′〉 + c
I d � 2: K(x , x′) � (〈x , x′〉 + c)2
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Examples: Polynomial Kernels (II)

For the special case with d � 2, assume x , x′ ∈ R2

K(x , x′) � (〈x , x′〉 + c)2 (49)
� (x1x′1 + x2x′2 + c)2 (50)
� x2

1x′21 + x1x2x′1x′2 + cx1x′1 + x1x2x′1x′2
+x2

2x′22 + cx2x′2 + cx1x′1 + cx2x′2 + c2 (51)

� x2
1x′21 + x2

2x′22 + 2x1x′1x2x′2 (52)
+2cx1x′1 + 2cx2x′2 + c2 (53)

� [x2
1 , x

2
2 ,
√

2x1x2 ,
√

2cx1 ,
√

2cx2 , c]



x′21
x′22√

2x′1x′2√
2cx′1√
2cx′2

c
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Examples: Polynomial Kernels (III)

Let K(x , x′) � 〈Φ(x),Φ(x′)〉, then

Φ(x) � [x2
1 , x

2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c] (54)

which maps a 2-D data point x into a 6-D space as Φ(x)

Recall the XOR problem
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Gaussian Kernels

For any constant σ > 0, a Gaussian kernel or radial basis
function (RBF) is the kernel K defined over Rd by

K(x , x′) � exp

(
−
‖x′ − x‖22

2σ2

)
(55)

x1

x2

Question: What Φ(x) looks like in this case?
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SVMs with Kernel Functions

I Problem definition

max
α

m∑
i�1

αi −
1
2

m∑
i , j�1

αiα j yi y jK(xi , x j)

s.t. αi ≥ 0 and
m∑

i�1
αi yi � 0, i ∈ [m]

(56)

I Solution: separable case

h(x) � sign

(
m∑

i�1
αi yiK(xi , x) + b

)
(57)

with b � yi −
∑m

j�1 α j y jK(x j , xi) for any xi with αi > 0
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The Choice of Kernels

I The choice of K(x , x′) can be arbitrary, as long as the
existence of Φ(·) is guaranteed
I For many cases, Φ(·) cannot be found explicitly

I Alternatively, we only need to make sure K(x , x′) is
positive definite symmetric (PDS)
I A kernel K is PDS if for any {x1 , . . . , xm} the matrix K

is symmetric positive semi-definite

K � [K(xi , x j)]i , j ∈ Rm×m (58)

I A symmetric positive semi-definite matrix is defined
as

cTKc ≥ 0 (59)

[Mohri et al., 2018, Section 6.1 - 6.2] 40
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