CS 6316 Machine Learning

Yangfeng Ji

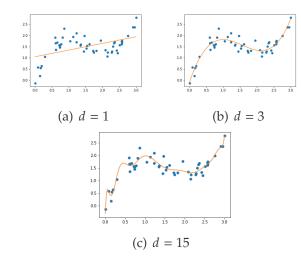
Department of Computer Science University of Virginia

ENGINEERING

Overview

Polynominals

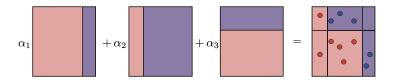
Polynomial regression



Boosting

Adaboost combines *T* weak classifiers to form a (strong) classifier

$$\operatorname{sign}(\sum_{t=1}^{T} w_t h_t(x)) = h(x) \tag{1}$$



where T controls the model complexity

[Mohri et al., 2018, Page 147]

Structural Risk Minimization

Take linear regression with ℓ_2 as an example. Let \mathcal{H}_{λ} represents the hypothesis space defined with the following objective function

$$L_{S,\ell_2}(h_w) = \frac{1}{m} \sum_{i=1}^m (h_w(x_i) - y_i)^2 + \lambda \|w\|^2$$
(2)

where λ is the regularization parameter

Structural Risk Minimization

Take linear regression with ℓ_2 as an example. Let \mathcal{H}_{λ} represents the hypothesis space defined with the following objective function

$$L_{S,\ell_2}(h_w) = \frac{1}{m} \sum_{i=1}^m (h_w(x_i) - y_i)^2 + \lambda ||w||^2$$
(2)

where λ is the regularization parameter

The basic idea of SRM is to start from a small hypothesis space (e.g., ℋ_λ with a small λ, then gradually increase λ to have a larger ℋ_λ

Structural Risk Minimization

Take linear regression with ℓ_2 as an example. Let \mathcal{H}_{λ} represents the hypothesis space defined with the following objective function

$$L_{S,\ell_2}(h_w) = \frac{1}{m} \sum_{i=1}^m (h_w(x_i) - y_i)^2 + \lambda ||w||^2$$
(2)

where λ is the regularization parameter

- The basic idea of SRM is to start from a small hypothesis space (e.g., ℋ_λ with a small λ, then gradually increase λ to have a larger ℋ_λ
- Another example: Support Vector Machines (next lecture)

Since we cannot compute the true error of any given hypothesis $h \in \mathcal{H}$

- How to evaluate the performance for a given model?
- How to select the best model among a few candidates?

Model Validation

The simplest way to estimate the true error of a predictor h

Independently sample an additional set of examples
 V with size m_v

$$V = \{(x_1, y_1), \dots, (x_{m_v}, y_{m_v})\}$$
 (3)

• Evaluate the predictor *h* on this validation set

$$L_V(h) = \frac{|\{i \in [m_v] : h(x) \neq y_i\}|}{m_v}.$$
 (4)

Usually, $L_V(h)$ is a good approximation to $L_{\mathfrak{D}}(h)$

Theorem

Let *h* be some predictor and assume that the loss function is in [0, 1]. Then, for every $\delta \in (0, 1)$, with probability of at least $1 - \delta$ over the choice of a validation set *V* of size m_v , we have

$$|L_V(h) - L_{\mathfrak{D}}(h)| \le \sqrt{\frac{\log(2/\delta)}{2m_v}}$$
(5)

where

- $L_V(h)$: the validation error
- $L_{\mathfrak{D}}(h)$: the true error

[Shalev-Shwartz and Ben-David, 2014, Theorem 11.1]

Sample Complexity

The fundamental theorem of learning

$$L_{\mathcal{D}}(h) \le L_{\mathcal{S}}(h) + \sqrt{C\frac{d + \log(1/\delta)}{m}} \tag{6}$$

where d is the VC dimension of the corresponding hypothesis space

Sample Complexity

The fundamental theorem of learning

$$L_{\mathfrak{D}}(h) \le L_{\mathcal{S}}(h) + \sqrt{C\frac{d + \log(1/\delta)}{m}} \tag{6}$$

where *d* is the VC dimension of the corresponding hypothesis space

• On the other hand, from the previous theorem

$$L_{\mathfrak{D}}(h) \le L_V(h) + \sqrt{\frac{\log(2/\delta)}{2m_v}} \tag{7}$$

 A good validation set should have similar number of examples as in the training set

Model Selection

Model Selection Procedure

Given the training set S and the validation set V

For each model configuration *c*, find the best hypothesis *h_c(x, S)*

$$h_c(\boldsymbol{x}, S) = \operatorname*{argmin}_{h' \in \mathcal{H}_c} L_S(h'(\boldsymbol{x}, S)) \tag{8}$$

Given the training set S and the validation set V

For each model configuration *c*, find the best hypothesis *h_c*(*x*, *S*)

$$h_c(\boldsymbol{x}, S) = \operatorname*{argmin}_{h' \in \mathcal{H}_c} L_S(h'(\boldsymbol{x}, S))$$
(8)

With a collection of best models with different configurations H' = {h_{c1}(x, S), ..., h_{ck}(x, S)}, find the overall best hypothesis

$$h(\boldsymbol{x}, S) = \operatorname*{argmin}_{h' \in \mathcal{H}'} L_V(h'(\boldsymbol{x}, S)) \tag{9}$$

Given the training set S and the validation set V

For each model configuration *c*, find the best hypothesis *h_c*(*x*, *S*)

$$h_c(\boldsymbol{x}, S) = \operatorname*{argmin}_{h' \in \mathcal{H}_c} L_S(h'(\boldsymbol{x}, S))$$
(8)

With a collection of best models with different configurations H' = {h_{c1}(x, S), ..., h_{ck}(x, S)}, find the overall best hypothesis

$$h(\boldsymbol{x}, S) = \operatorname*{argmin}_{h' \in \boldsymbol{\mathcal{H}}'} L_V(h'(\boldsymbol{x}, S)) \tag{9}$$

It is similar to learn with the finite hypothesis space
 H'

Model Configuration/Hyperparameters

Consider polynomial regression

$$\mathcal{H}_d = \{ w_0 + w_1 x + \dots + w_d x^d : w_0, w_1, \dots, w_d \in \mathbb{R} \}$$
(10)

- ► the degree of polynomials *d*
- regularization coefficient λ as in $\lambda \cdot ||w||_2^2$
- the bias term w_0

Model Configuration/Hyperparameters

Consider polynomial regression

$$\mathcal{H}_d = \{ w_0 + w_1 x + \dots + w_d x^d : w_0, w_1, \dots, w_d \in \mathbb{R} \}$$
(10)

- ► the degree of polynomials *d*
- regularization coefficient λ as in $\lambda \cdot ||w||_2^2$
- the bias term w_0

Additional factors during learning

- Optimization methods
- Dimensionality of inputs, etc.

If the validation set is

- small, then it could be biased and could not give a good approximation to the true error
- large, e.g., the same order of the training set, then we waste the information if do not use the examples for training.

k-Fold Cross Validation

The basic procedure of *k*-fold cross validation:

Split the whole data set into *k* parts

Data

The basic procedure of *k*-fold cross validation:

- Split the whole data set into *k* parts
- For each model configuration, run the learning procedure k times
 - Each time, pick one part as validation set and the rest as training set

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
--------	--------	--------	--------	--------

The basic procedure of *k*-fold cross validation:

- Split the whole data set into *k* parts
- For each model configuration, run the learning procedure k times
 - Each time, pick one part as validation set and the rest as training set
- Take the average of k validation errors as the model error

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
--------	--------	--------	--------	--------

Cross-Validation Algorithm

- Input: (1) training set *S*; (2) set of parameter values Θ;
 (3) learning algorithm *A*, and (4) integer *k*
- 2: Partition *S* into S_1, S_2, \ldots, S_k
- 3: for $\theta \in \Theta$ do

4: **for**
$$i = 1, ..., k$$
 do

5:
$$h_{i,\theta} = A(S \setminus S_i; \theta)$$

6: end for

7:
$$\operatorname{Err}(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})$$

8: end for

9: **Output**: the hypothesis $h_S(x) = \text{sign}(\sum_{t=1}^T w_t h_t(x))$

In practice, *k* is usually 5 or 10.

Train-Validation-Test Split

- Training set: used for learning with a pre-selected hypothesis space, such as
 - logistic regression for classification
 - polynomial regression with d = 15 and $\lambda = 0.1$
- Validation set: used for selecting the best hypothesis across multiple hypothesis spaces
 - ▶ Similar to learning with a finite hypothesis space ℋ
- Test set: only used for evaluating the overall best hypothesis

Train-Validation-Test Split

- Training set: used for learning with a pre-selected hypothesis space, such as
 - logistic regression for classification
 - polynomial regression with d = 15 and $\lambda = 0.1$
- Validation set: used for selecting the best hypothesis across multiple hypothesis spaces
 - ▶ Similar to learning with a finite hypothesis space ℋ
- Test set: only used for evaluating the overall best hypothesis

Typical splits on *all* available data

Train	Val	Test
-------	-----	------

Train-Validation-Test Split

- Training set: used for learning with a pre-selected hypothesis space, such as
 - logistic regression for classification
 - polynomial regression with d = 15 and $\lambda = 0.1$
- Validation set: used for selecting the best hypothesis across multiple hypothesis spaces
 - ▶ Similar to learning with a finite hypothesis space ℋ
- Test set: only used for evaluating the overall best hypothesis

Typical splits on *all* available data

Fold 1 Fold 2	Fold 3	Fold 4	Fold 5	Test
---------------	--------	--------	--------	------

Model Selection in Practice

There are many elements that can help fix the learning procedure

Get a larger sample

[Shalev-Shwartz and Ben-David, 2014, Page 151] 18

There are many elements that can help fix the learning procedure

- Get a larger sample
- Change the hypothesis class by
 - Enlarging it
 - Reducing it
 - Completely changing it
 - Changing the parameters you consider

There are many elements that can help fix the learning procedure

- Get a larger sample
- Change the hypothesis class by
 - Enlarging it
 - Reducing it
 - Completely changing it
 - Changing the parameters you consider
- Change the feature representation of the data (usually domain dependent)

[Shalev-Shwartz and Ben-David, 2014, Page 151] 18

There are many elements that can help fix the learning procedure

- Get a larger sample
- Change the hypothesis class by
 - Enlarging it
 - Reducing it
 - Completely changing it
 - Changing the parameters you consider
- Change the feature representation of the data (usually domain dependent)
- Change the optimization algorithm used to apply your learning rule (lecture on optimization methods)

[Shalev-Shwartz and Ben-David, 2014, Page 151] 18

Error Decomposition Using Validation

With two additional terms

- $L_V(h_S)$: validation error
- $L_S(h_S)$: empirical (*or* training) error

the true error of h_S can be decomposed as

$$L_{\mathcal{D}}(h_{S}) = \underbrace{(L_{\mathcal{D}}(h_{S}) - L_{V}(h_{S}))}_{(1)} + \underbrace{(L_{V}(h_{S}) - L_{S}(h_{S}))}_{(2)} + \underbrace{L_{S}(h_{S})}_{(3)}$$

- Item (1) is bounded by the previous theorem
- Item (2) is large: overfitting
- ► Item (3) is large: **underfitting**

About Large $L_S(h_S)$

Recall that h_S is an ERM hypothesis, aka

$$h_{S} \in \underset{h' \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h') \tag{11}$$

Recall that h_S is an ERM hypothesis, aka

$$h_{S} \in \underset{h' \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h') \tag{11}$$

If $L_S(h_S)$ is large, it is possible that

- 1. the hypothesis space $\mathcal H$ is not large enough
- 2. the hypothesis space is large enough, but your implementation has some bugs

Recall that h_S is an ERM hypothesis, aka

$$h_{S} \in \underset{h' \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h') \tag{11}$$

If $L_S(h_S)$ is large, it is possible that

- 1. the hypothesis space $\mathcal H$ is not large enough
- 2. the hypothesis space is large enough, but your implementation has some bugs
- Q: How to distinguish these two?

Recall that h_S is an ERM hypothesis, aka

$$h_{S} \in \underset{h' \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h') \tag{11}$$

If $L_S(h_S)$ is large, it is possible that

- 1. the hypothesis space $\mathcal H$ is not large enough
- 2. the hypothesis space is large enough, but your implementation has some bugs
- Q: How to distinguish these two?
- A: Find an existing simple baseline model

About Large $L_V(h_S)$

... with a small $L_S(h_S)$, it is possible that

- 1. the hypothesis space is too large
- 2. you may not have enough training examples
- 3. the hypothesis space is inappropriate

... with a small $L_S(h_S)$, it is possible that

- 1. the hypothesis space is too large
- 2. you may not have enough training examples
- 3. the hypothesis space is inappropriate

Comments

- Issue 1 and 2 are easy to fix
 - Get more data if possible, or reduce the hypothesis space
- How to distinguish issue 3 from 1 and 2?

Learning Curves

With different proportions of training examples, we can plot the training and validation errors

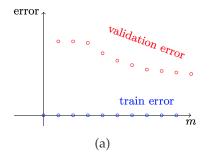


Figure: Examples of learning curves [Shalev-Shwartz and Ben-David, 2014, Page 153].

Learning Curves

With different proportions of training examples, we can plot the training and validation errors

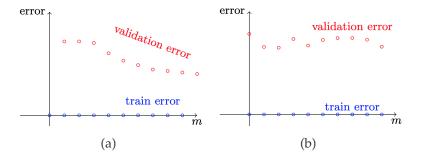


Figure: Examples of learning curves [Shalev-Shwartz and Ben-David, 2014, Page 153].

Reference

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT press.

Shalev-Shwartz, S. and Ben-David, S. (2014). *Understanding machine learning: From theory to algorithms.* Cambridge university press.