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Overview



The Bias-Variance Decomposition

The expected error is decomposed as

E
[
ε2]

� E
[
{h(x , S) − E [h(x , S)]}2

]︸                             ︷︷                             ︸
variance

+ {E [h(x , S)] − fD(x)}2︸                      ︷︷                      ︸
bias2

I bias: how far the expected prediction E [h(x , S)]
diverges from the optimal predictor fD(x)

I variance: how a hypothesis learned from a specific S
diverges from the average prediction E [h(x , S)]
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Motivation

How can we reduce the overall error?

E.g.,

I Reduce the bias
I Boosting: start with simple classifiers, and gradually

make a powerful one
I Reduce the variance

I Bagging: create multiple copies of data and train
classifiers on each of them, then combine them
together
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The Idea of Boosting
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Weak Learnability



Weak Learnability

I A learning algorithm A is a γ-weak-learner for a
hypothesis space, if for the PAC learning condition,
the algorithm returns a hypothesis h such that, with
probability of at least 1 − δ,

L(D, f )(h) ≤
1
2 − γ (1)

I A hypothesis space H is γ-weak-learnable if there
exists a γ-weak-learner for this class
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Strong vs. Weak Learnability

I Strong learnability

L(D, f )(h) ≤ ε (2)

where ε is arbitrarily small
I Weak learnability

L(D, f )(h) ≤
1
2 − γ (3)

where γ > 0. In other words, the error rate of weak
learnability is slightly better than random guessing
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Decision Stumps

I Let X� Rd , the hypothesis space of decision stumps
is defined as

HDS � {b · sign(x·, j − θ) : θ ∈ R, j ∈ [d]} (4)

with parameters θ ∈ R, j ∈ [d], and b ∈ {−1,+1}

I For each hθ, j,b ∈ HDS with j � 1 and b � +1

hθ,1,+1(x) �
{
+1 x·,1 > θ
−1 x·,1 < θ

(5)

x1

x2
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Empirical Risk

I The empirical risk with a training set
S � {(x1, y1), . . . , (xm , ym)} is defined as

LD(hθ, j,b) �
m∑

i�1
Di · 1[hθ, j,b(xi) , yi] (6)

where 1[·] is the indicator function and
1[h(xi) , yi] � 1 when h(xi) , yi is true

I A special case with Di �
1
m , then

LD(h) � LS(h) �
∑m

i�1 1[h(xi) , yi]
m

(7)
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Learning a Decision Stump

I For each j ∈ [d]
I Sort training examples, such that

x1, j ≤ x2, j ≤ · · · ≤ xm , j (8)

I Define
Θ j � {

xi , j+xi+1, j
2 : i ∈ [m − 1]} ∪ {(x1, j − 1), (xm , j + 1)}

I Try each θ′ ∈ Θ j and find the minimal risk with j

LD(hθ′, j,b) �
m∑

i�1
Di · 1[hθ′, j(xi) , yi] (9)

I Find the minimal risk for all j ∈ [d]
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Example

Build a decision stump for the following classification task
with the assumption that

D � (19 , . . . ,
1
9) (10)

x1

x2

The best decision stump is x·,1 � 0.6
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Boosting



Boosting

Q: Cen we boost a set of weak classifiers and make a
strong classifier?

A: Yes. It looks like

hS(x) � sign(
T∑

t�1
wt ht(x)) (11)

Three questions

I How to find each weak classifier ht(x)?
I How to compute wt?
I How large the T is?
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AdaBoost
1: Input: S � {(x1, y1), . . . , (xm , ym))}, weak learner A,

number of rounds T
2: Initialize D(1) � ( 1

m , . . . ,
1
m )

3: for t � 1, . . . , T do

4: Learn a weak classifier ht � A(D(t), S)
5: Compute error εt �

∑m
i�1 D(t)i 1[ht(xi) , yi]

6: Let wt �
1
2 log( 1

εt
− 1)

7: Update, for all i � 1, . . . ,m

D(t+1)
i �

D(t)i exp(−wt yiht(x))∑m
j�1 D(t)j exp(−wt y jht(x j))

8: end for
9: Output: the hypothesis hS(x) � sign(∑T

t�1 wt ht(x)) 14
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Example

(a) t � 1

(b) t � 2 (c) t � 3

[Mohri et al., 2018, Page 147]
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Example (Cont.)

sign(
T∑

t�1
wt ht(x)) � h(x) (12)

[Mohri et al., 2018, Page 147]
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Theortical Analysis

Let S be a training set and assume that at each iteration of
AdaBoost, the weak learner returns a hypothesis for
which

εt ≤
1
2 − γ.

Then, the training error of the output hypothesis of
AdaBoost is at most

LS(hS) �
1
m

1[hS(xi) , yi] ≤ exp(−2γ2T) (13)

[Shalev-Shwartz and Ben-David, 2014, Page 135 – 137]
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VC Dimension

Let

I B be a base hypothesis space (e.g., decision stumps)
I L(B, T) be the hypothesis space produced by the

AdaBoost algorithm

Assume that both T and VC-dim(B) are at least 3. Then,

VC-dim(L(B, T)) ≤ O{T · VC-dim(B) · log(T · VC-dim(B))}

[Shalev-Shwartz and Ben-David, 2014, Page 139]
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