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Quiz

For a real-world machine learning problem, which of the
following items are usually available to us?

I Training set S � {(x1, y1), . . . , (xm , ym)}
I Domain set X
I Label set Y
I Labeling function (the oracle) f
I Distribution D over X× Y

I The Bayes predictor fD(x)
I The size of the hypothesis space H

I The empirical risk of a hypothesis h(x) ∈ H, LS(h(x))
I The true risk of a hypothesis h(x) ∈ H, LD(h(x))
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Agnostic PAC Learnability

A hypothesis class H is agnostic PAC learnable if there
exist a function mH : (0, 1)2→ N and a learning algorithm
with the following property:

I for every distribution D over X× {−1,+1} and
I for every ε, δ ∈ (0, 1),

when running the learning algorithm on m ≥ mH(ε, δ)
i.i.d. examples generated by D, the algorithm returns a
hypothesis hS 1 such that, with probability of at least 1 − δ,

LD(hS) ≤ min
h′∈H

LD(h′) + ε (1)

1Sometimes, as hS(x) or h(x , S)
2



The Bayes Optimal Predictor

I The Bayes optimal predictor: given a probability
distribution D over X× {−1,+1}, the predictor is
defined as

fD(x) �
{
+1 if P[y � 1|x] ≥ 1

2
−1 otherwise

(2)

I No other predictor can do better: for any predictor h

LD( fD) ≤ LD(h) (3)

I Question: is fD ∈ argminh′∈HLD(h′)?
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The Gap between hS and fD

For illustration purpose, let us assume the gap between hS

and fD can be visualized in the following plot

w1

w2
hS

fD

ε

I hS � argminh′∈HLS(h′): learned by minimizing the
empirical risk

I fD: the optimal predictor if we know the data
distribution D
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Question

Q: For a given hypothesis space H, does

fD ∈ argmin
h′

LD(h′) (4)

hold?

A: it depends the selection of the hypothesis space H,
usually not.

Example: if fD is a nonlinear classifier, while we choose to
use logistic regression.
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Outline

The previous example implies the error gap between hS

and fD can be decomposed into two components

w1

w2
hS

fD

ε

Two different perspectives of the decomposition

I The bias-complexity tradeoff: from the perspective of
learning theory

I The bias-variance tradeoff: from the perspective of
statistical learning/estimation
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The Bias-Complexity Tradeoff



Basic Learning Procedure

The basic component of formulating a learning process

I Input/output space X× Y

I Hypothesis space H

I Learning via empirical risk minimization

hS ∈ argmin
h′∈H

LS(h′) (5)

I Goal: analyzing the true error of hS, LD(hS)

8



Example

Consider the binary classification problem with the data
sampled from the following distribution

D�
1
2
B(x; 5, 1) + 1

2
B(x; 1, 2) (6)

9



Example (Cont.)

Given the distribution, we can compute the true
risk/error of the Bayes predictor fD as

LD( fD) �
1
2
B(x < bBayes; 5, 1) +

1
2
(1 −B(x < bBayes; 1, 2))

� 0.11799 (7)
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Example (Cont.)

The hypothesis space H is defined as

hi(x) �
{
+1 x > i

N
−1 x < i

N
(8)

where N ∈ N is a predefined integer

I This is an unrealizable case
I The value of N is the size of the hypothesis space
I The best hypothesis in H

h∗ ∈ argmin
h′∈H

LD(h′) (9)

I Very likely the best predictor in H is not the Bayes
predictor, unless bBayes ∈ { i

N : i ∈ [N]}
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Error Decomposition

The error gap between hS and fD can be decomposed as
two parts

LD(hS) − LD( fD) � εapp + εest (10)

w1

w2

hS

fD

h∗

εapp

εest

I Approximation error εapp caused by selecting a
specific hypothesis space H (model bias)

I Estimation error εest caused by selecting hS with a
specific training set
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Approximation Error εapp

To reduce the approximation error εapp, we could increase
the size of the hypothesis space

w1

w2

hS

fD

h∗

εapp

εest

h∗

The cost is that we also increase the size of training set, in
order to maintain the overall error in the same level (recall
the sample complexity of finite hypothesis spaces).
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Estimation Error εest

On the other hand, if we use the same training set S, then
we may have a larger estimation error

w1

w2

hS

fD

h∗

h∗

hS

The bias-complexity tradeoff: find the right balance to
reduce both approximation error and estimation error.
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Example: 200 training examples

We randomly sampled 100 examples from each class

D�
1
2
B(x; 5, 1) + 1

2
B(x; 1, 2) (11)
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Example: 200 training examples

Given 200 training examples, the errors with respect to
different hypothesis space is the following (x axis is the
size of H)

There is a tradeoff with respect to the size of H 16



Example: 2000 training examples

We randomly sampled 1000 examples from each class

D�
1
2
B(x; 5, 1) + 1

2
B(x; 1, 2) (12)
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Example: 2000 training examples

With these 2000 training examples, the errors with respect
to different hypothesis space is the following

Both errors are smaller, but the tradeoff still exists

Exercise: The bias-complexity tradeoff with a Gaussian
mixture model.
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Summary

Three components in this decomposition

I hS ∈ argminh′∈HLS(h′): the ERM predictor given the
training set S

I h∗ ∈ argminh′∈HLD(h′): the optimal predictor from H

I fD: the Bayes predictor given D

Balancing strategy:

I we can incrase the complexity of hypothesis space to
reduce the bias, e.g.,
I enlarge the hypothesis space (as in the running

example)
I replacing linear predictors with nonlinear predictors

I in the meantime, we have to increase the training size
to reduce the approximation error.
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The Bias-Variance Tradeoff



A New Perspective

Let us analyze the error ε without the assumption of

I knowing the best predictor from H,
h∗ ∈ argminh′∈HLD(h′)

I changing the size of S

w1

w2
hS

fD

ε

We still need (1) the ERM predictor hS and (2) the Bayes
predictor fD
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A New Way of Decomposition

. . . by considering

I the randomness in S with m training examples
I the average prediction given by E [h(x , S)]where

S ∼ Dm

22



Data Generation Model

Consider the following data generation model

I X ∼ U[0, 1] uniform distribution
I Y � N(X + sin(2X), σ2)with σ2 � 0.1

An example of S is

23



Hypothesis Spaces

Given S and the following hypothesis space H1

H1 � {w0 + w1x : w0, w1 ∈ R} (13)

the regression result

24



Hypothesis Spaces (Cont.)

Given S and the following hypothesis space H3

H3 � {w0 + w1x + w2x2
+ w3x3 : w0, w1, w2, w3 ∈ R} (14)

the regression result

25



Hypothesis Spaces (Cont.)

Given S and the following hypothesis space H15

H15 � {w0+w1x+ · · ·+w15x15 : w0, w1, · · · , w15 ∈ R} (15)

I Intuitively, the degree of the polynomials indicates
the potential/complexity of the hypothesis space

I Refer to the VC dimension section for more discussion

26
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Error Decomposition

The difference between the best hypothesis h(x , S) and the
Bayes predictor fD(x) is measured as

ε2
� {h(x , S) − fD(x)}2 (16)

Introduce E [h(x , S)] into the calculation, we have

ε2
� {h(x , S) − E [h(x , S)] + E [h(x , S)] − fD(x)}2

� {h(x , S) − E [h(x , S)]}2 + {E [h(x , S)] − fD(x)}2

+2{h(x , S) − E [h(x , S)]} · {E [h(x , S)] − fD(x)}

27
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Review: Mean

Given a random variable X and its probability density
function p(x)

I Mean: E [X] �
∫

xp(x)dx
I Approximation to the mean with samples
{x1, . . . , xm}

E [X] ≈ 1
m

m∑
i�1

xi (17)

I Property: E [αX] � αE [X] for α is determinstic
I Example: the mean of a Gaussian distribution

N(x; µ, σ2)
E [X] � µ (18)
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Review: Variance

Given a random variable X, its probability density
function p(x), and its mean E [X]
I Variance: Var(X) � E

[
(X − E [X])2

]
I Example: the variance of a Gaussian distribution

N(x; µ, σ2)
Var(X) � σ2 (19)

Var(X) � E
[
(X − E [X])2

]
� E

[
X2 − 2XE [X] + E [X]2

]
� E

[
X2] − 2E [X]E [X] + E [X]2

� E
[
X2] − E [X]2
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Error Decomposition (Cont.)

Taking the expectation of ε2

E
[
ε2]

� E
[
{h(x , S) − E [h(x , S)]}2

]
+ {E [h(x , S)] − fD(x)}2

+2E [{h(x , S) − E [h(x , S)]}] · {E [h(x , S)] − fD(x)}

� E
[
{h(x , S) − E [h(x , S)]}2

]
+ {E [h(x , S)] − fD(x)}2

+2{E [h(x , S)] − E [h(x , S)]} · {E [h(x , S)] − fD(x)}
� E

[
{h(x , S) − E [h(x , S)]}2

]
+ {E [h(x , S)] − fD(x)}2
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The Bias-Variance Decomposition

The expected error is decomposed as

E
[
ε2]

� E
[
{h(x , S) − E [h(x , S)]}2

]︸                             ︷︷                             ︸
variance

+ {E [h(x , S)] − fD(x)}2︸                      ︷︷                      ︸
bias2

I bias: how far the expected prediction E [h(x , S)]
diverges from the optimal predictor fD(x)

I variance: how a hypothesis learned from a specific S
diverges from the average prediction E [h(x , S)]
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Computing E [h(x , S)]

The key of computing E [h(x , S)] is to eliminate the
randomness introduced by S

1: for k � 1, · · · , K do
2: Sample a traing set Sk with size m from the data

generation model
3: Find the best hypothesis via

h(x , Sk) ∈ argminh′ L(h′, Sk)
4: end for
5: Output:

E [h(x , S)] ≈ 1
K

K∑
k�1

h(x , Sk)

The larger K, the better approximation
32



Example: Bias and Variance

With K � 50, m � 100, and H1, we can visualize the bias
and variance of a linear regression example as following

High bias and low variance (Underfitting)
33



Example: Bias and Variance (Cont.)

Same training set with H3

Both bias and variance are fine
34



Example: Bias and Variance (Cont.)

Same training set with H15

Low bias and high variance (Overfitting)

Exercise: The bias-variance tradeoff on linear regression
with `2 regularization
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The Bias-Variance Tradeoff

I bias: how far the expected prediction E [h(x , S)]
diverges from the optimal predictor fD(x)
I Error of this part is caused by the selection of a

hypothesis space

I variance: how a hypothesis learned from a specific S
diverges from the average prediction E [h(x , S)]
I Error of this part is caused by using a particular data

set S

36
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The VC Dimension



Learnability with Infinite Hypotheses

Infinite-size hypothesis space is learnable

Examples

I Half-space predictor
I Logistic regression predictor
I Many others

38



Shattering

For a given set C and a hypothesis space H,

I A dichotomy of the set is one of the possible ways of
labeling the points in C using a hypothesis h ∈ H

I A set C of m ≥ 1 points is said to be shattered by a
hypothesis space H, if all possible dichotomies of S
can be realized by H

[Mohri et al., 2018, Page 36]
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Shattering: Example

Consider the following set C and the half-space
hypothesis space

Hhalf � {w0 + w1x1 + w2x2 � 0 : w0, w1, w2 ∈ R} (20)

x1

x2

There are 23 � 8 different ways to label the points and
Hhalf can realized all of them. 40



VC Dimension

The VC-dimension of a hypothesis space H, denoted
VCdim(H), is the maximal size of a set C ⊂ X that can be

shattered by H.

A: How to find the VC-dimension of a given hypothesis
space?
Q: The proof consists of two parts:

I There exists a set C of size d that is shattered by H

I Every set C of size d + 1 is not shattered by H

[Shalev-Shwartz and Ben-David, 2014, Page 70]
41



VC Dimension

The VC-dimension of a hypothesis space H, denoted
VCdim(H), is the maximal size of a set C ⊂ X that can be

shattered by H.

A: How to find the VC-dimension of a given hypothesis
space?
Q: The proof consists of two parts:

I There exists a set C of size d that is shattered by H

I Every set C of size d + 1 is not shattered by H

[Shalev-Shwartz and Ben-David, 2014, Page 70]
41



Half Spaces

Consider a special case as following, where
VC-dim(Hhalf) � 3

Hhalf � {w0 + w1x1 + w2x2 � 0 : w0, w1, w2 ∈ R} (21)

(1) Exist a case

x1

x2

(2) For any case

x1

x2
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Axis-aligned Rectangles

Let Hbe the class of axis-aligned rectangle, formally

H� {h(a1 ,a2 ,b1 ,b2) : a1 ≤ a2 and b1 ≤ b2} (22)

where

h(a1 ,a2 ,b1 ,b2)(x1, x2) �
{
+1 x1 ∈ [a1, a2]and x2 ∈ [b1, b2]
−1 otherwise

VC-dim(Hrect) � 4
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−1 otherwise

Exist a case

VC-dim(Hrect) � 4
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VC Dimension and the Number of Parameters

I For linear predictors, the VC dimensions are equal to
the numbers of parameters

Hhalf � {w0 + w1x1 + w2x2 � 0 : w0, w1, w2 ∈ R} (23)

x1

x2

I However, the case is not always true. Considering the
following hypothesis space
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Sine Functions

The hypothesis space of sine functions is defined as

Hsin � {sin(α · x) : α ∈ R} (24)
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Sine Functions

The hypothesis space of sine functions is defined as

Hsin � {sin(α · x) : α ∈ R} (24)
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VC-dim(Hsin) � ∞
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