CS 6316 Machine Learning

Linear Predictors

Yangfeng Ji

Department of Computer Science
University of Virginia

il URRERITY | ENGINEERING

Overview

1. Review: Linear Functions

2. Perceptron
3. Logistic Regression

4. Linear Regression

Review: Linear Functions

Linear Predictors

Linear predictors discussed in this course

halfspace predictors

logistic regression classifiers

>

>

» linear SVMs (lecture on support vector machines)

> naive Bayes classifiers (lecture on generative models)
>

linear regression predictors

Linear Predictors

Linear predictors discussed in this course

halfspace predictors

logistic regression classifiers

>

>

» linear SVMs (lecture on support vector machines)

> naive Bayes classifiers (lecture on generative models)
>

linear regression predictors

A common core form of these linear predictors

d
hw,b = (w,x>+b= (Zwixi)+b (1)
i=1

where w is the weights and b is the bias

Alternative Form

Given the original definition of a linear function

d
ha = (w,x) +b = () wixi) +1, (2)
i=1

we could redefine it in a more compact form

w — (w1,w2,...,wd,b)T

x «— (x1,x2,. ..,xd,l)T

and then
ha b(x) = (w, x) (3)

Linear Functions

Consider a two-dimensional case with w = (1,1, -0.5)
f(x)=w'x =x;+x,-05 (4)

X2

N

Different values of f(x) map to different areas on this 2-D

space. For example, the following equation defines the
blue line L.

flx)=w'x=0 G) s

Properties of Linear Functions (Il)

For any two points x and x’ lying in the line
fxX)- f@)=w'x—w'x’ =0 (6)

X2

*\

AN “

\é'\

[Friedman et al., 2001, Section 4.5]

Properties of Linear Functions (lll)

Furthermore,
f(x) =x1+x2-05=0 (7)
separates the 2-D space R? into two half spaces

X2

\ f(x)>0

N .~

f(x) <0 \

Properties of Linear Functions (1V)

From the perspective of linear projection, f(x) = 0 defines
the vectors on this 2-D space, whose projections onto the
direction (1, 1) have the same magnitude 0.5

1
X1+XQ—O.5=0=>(X1,X2)'(1)=0.5 (8)

X2

d

X1

8
[Friedman et al., 2001, Section 4.5]

Properties of Linear Functions (1V)

From the perspective of linear projection, f(x) = 0 defines
the vectors on this 2-D space, whose projections onto the
direction (1, 1) have the same magnitude 0.5

1
X1+XQ—O.5=0=>(X1,X2)'(1)=0.5 (8)
X

\K (1‘;1) This idea can be generalized

to compute the distance

1 between a point and a line.

8
[Friedman et al., 2001, Section 4.5]

Properties of Linear Functions (1V)

The distance of point x to line L : f(x) = (w,x) =0is

given by
flx) (w,x) w
= = ,x
ol = Tk - ek ™ ©)
X2
\ :
\/ X1

AN

[Friedman et al., 2001, Section 4.5]

Perceptron

Halfspace Hypothesis Class

> L = R4
> Y ={-1,+1}
» Halfspace hypothesis class

Fnal = {sign((w, x)) : w € R} (10)
which is an infinite hypothesis space.

The sign function y = sign(x) is defined as

11

Linearly Separable Cases

The algorithm can find a hyperplane to separate all
positive examples from negative examples

X2

The definition of linearly separable cases is with respect to
the training set S instead of @

12

Prediction Rule

The prediction rule of a half-space predictor is based on

the sign of h(x) = sign({w, x))

h(x) = {

X2

(w,x) >0

(w,x) <0

X1

+1 (w,x) >0
-1 (w,x) <0

X2

X1

(11)

13

Prediction Rule

The prediction rule of a half-space predictor is based on

the sign of h(x) = sign({w, x))

h(x) = {

h(x)=y" ify € {-1,+1}and y'(w,x) >0

or,

X2

(w,x) >0

(w,x) <0

N

X1

+1 (w,x) >0
-1 (w,x) <0

X2

+

N

X1

(11)

(12)

13

Perceptron Algorithm

The perceptron algorithm is defined as

1: Input: S= {(x1,y1), . ,(xm/ ym))}
2: Initialize w©® = (0, ...,0)

9: Output: w'?)

14

Perceptron Algorithm

The perceptron algorithm is defined as

[y

: Input: S = {(x1, y1), ..., (X, ym))}
2: Initialize w©® = (0, ...,0)

3 fort=1,2,---,T do

4: 1<t modm

8: end for
9: Output: w'?)

14

Perceptron Algorithm

The perceptron algorithm is defined as

N

Input: S = {(x1, y1), ..., (Xm, Ym))}
Initialize w© = (0, ...,0)
fort=1,2,---,T do

i «—t mod m

if yi(w(t),xi> < 0 then

w D — w® + y;x; /[updating rule

end if
end for
Output: w'?

14

Perceptron Algorithm

The perceptron algorithm is defined as

1 Input: S = {(x1, 1), ..., (Xm, Ym))}
Initialize w© = (0, ...,0)
fort=1,2,---,T do

i «—t mod m

if y;(w®, x;) < 0 then

w D — w® + y;x; /[updating rule

end if
end for
Output: w'?

N

Exercise: Implementing this algorithm with a simple
example 1

The updating rule can be break down into two cases:

w — w® 4 yx; (13)

> For y; = +1, w1 — w) +x;

> For y; = -1, w1 — w® — x;

15

The updating rule can be break down into two cases:

w — w® 4 yx; (13)

> For y; = +1, w1 — w) +x;

> For y; = -1, w1 — w® — x;
Two questions:

» How the updating rule can help?

» How many updating steps the algorithm needs?

15

The Updating Rule

At time step ¢, given the training example (x;, y;) and the
current weight w*)

yi(w"™, x) = yi(w® + yix;, x;) (14)
yi(w, ;) + ||| (15)

> i+ gives a higher value of y,-(w(”l), x;) on
predicting x; than w)

> the updating is affected by the norm of x;, ||x;||?

16

Theorem

Assume that {(x;, y;)}", is separable. Let

» B =min{||w]| : Vi € [m], yi{w, x;) > 1}, and

> R = max; ||x;]|.

Then, the Perceptron algorithm stops after at most (RB)?
iterations, and when it stops it holds that Vi € [m],

yi(w(t),x) >0 (16)

> A realizable case with infinite hypothesis space

> Finish training in finite steps

1

-1 -0.5 0 0.5 1

[Bishop, 2006, Page 195] 18

1

* []
L °
® Ll
05}
[]
0 L
[]
-05¢)
[]
-1 . . .
-1 -0.5 0 05 1

[Bishop, 2006, Page 195] 18

1

® °
®)
o \°®
05
0 L
)
=057)
)
_1 L L N
-1 -0.5 0 0.5 1

[Bishop, 2006, Page 195] 18

1

0.5¢

1

[Bishop, 2006, Page 195] 18

The XOR Example: a Non-separable Case

> X1,X2€{0,1}
» the XOR operation is
defined as %

Y=X19 X, °

where X1

v 1 X1+ X,
1o X1=X,

19

Perceptro,

Frank Rosenblatt
19281969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

The XOR Example: Further Comment

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

20

Logistic Regression

Hypothesis Class

» The hypothesis class of logistic regression is defined
as
Hir = {o((w, %)) : w € R} (17)

» The sigmoid function o(a) witha € R

(18)

22

Unified Form for Logistic Predictors

» An unified form for y € {-1, +1}

1
1+ exp(—y(w, x))

h(x,y) = (19)

which is similar to the half-space predictors

23

Unified Form for Logistic Predictors

» An unified form for y € {-1, +1}

1
1+ exp(—y(w, x))

h(x, y) = (19)

which is similar to the half-space predictors
» Prediction

1. Compute the the values from Eq. 19 with
y € {-1,+1}
2. Pick the y that has bigger value

| +1 h(x,+1) > h(x,-1)
) 21 h(x,+1) < h(x,-1) (20)

23

A Predictor

Take a close look of the uniform definition of h(x, y)

» When y = +1
1
h 1) =
wl@) =37 exp(—(w, x))
» Wheny = -1
1
hw(x,-1) =

1+ exp({w, x))
exp(—(w, x))
1+ exp(—(w, x))
1 1
1+ exp(—(w, x))
= 1= hy(x,+1)

24

A Linear Classifier?

To justify this is a linear classifier, let take a look the
decision boundary given by

h(x,+1) = h(x,-1) (21)

Specifically, we have

1 1
1+ exp(—(w, x)) 1+ exp({w, x))

exp(—(w,x)) = exp((w,x))
—(w,x) = (w,x)
2{w,x) = 0

The decision boundary is a straight line
25

Risk/Loss Function

For a given training example (x, v), the risk/loss function
is defined as the negative log of h(x,)

1
L, (x,y)) = =0 4 T 2y

= log(1 + exp(—y(w, x))) (22)

Intuitively, minimizing the risk will increase the value of

h(x,y)

26

ERM

The Empirical Risk Minimization (ERM) problem: given
the training set S = {(x1, ¥1), ..., (Xn, Ym)}, minimize the
following objective function with respect to w

L(hy, S) = %Z log(1 +exp(~yi{w, x:))) (23)
i=1

» L(hy,S) is convex function with respect to w

> Estimation of w: @ « argmin_, L(hy, S)

» Minimization can be done with gradient-based
optimization!

Imore detail will be covered in the lecture of optimization methods N
7

Gradient Descent

» The gradient of L(/,, S) with respect to w

dL(hw, S) _ Z exp(—yi{w, x;))
1

+exp(-yi{w, xi)) yixi) (24)

» Exercise: prove Eq. 24
28

Gradient Descent

» The gradient of L(/,, S) with respect to w

dL(hw,S) Z eXp(—]/i<W,Xi>) (_yx) (24)
] iXi

+exp(-yi(w, xi))
» Gradient-based learning

w(old) . ndL(hw/ S)

(new)
@ dw

where 7 is the updating step size.

» Exercise: prove Eq. 24
28

Gradient Descent

» The gradient of L(/,, S) with respect to w

dL(hw,S) Z eXp(—]/i<ZU,Xi>) (_yx) (24)
] iXi

+exp(-yi(w, xi))
» Gradient-based learning

w (new) _ (old) dL(hw 4 S)

01D 1 eXp(—yi<w, X)) ()i
T Z 1+ exp(-yi(w, xi)) Wiz
where 7 is the updating step size.

» Exercise: prove Eq. 24
28

More Analysis on Gradient Descent

Gradient-based learning

“(yixi) (25)

(new) _ _ (old) , T o exp(—yi{w, x;))
“ v ! m 21 +exp(y1<w xz))

(1)
@

For each (x;, y;), the update is
(1) directed by the true label y;, as in the Perceptron
algorithm

(2) proportional to the prediction value of the opposite
label (not like the Perceptron algorithm)

29

Updating Rules

Consider the case where the learning algorithms only
take one training example at each time

> Logistic regression

mew) _ g0l , o SXPYi(w, xi))
1+ exp(-yi{w, x;))

(yixi) (26)

30

Updating Rules

Consider the case where the learning algorithms only
take one training example at each time

> Logistic regression

mew) _ g0l , o SXPYi(w, xi))
1+ exp(-yi{w, x;))

- (yixi) (26)
» Perceptron algorithm
w W) = gD 4y (27)
only applies when the prediction is wrong

30

A Probabilistic View of Logistic Regression

» From a probabilistic view, logistic regression defines
the probability of a possible label y given the input x

1
1+ exp(—y(w, x))

pw(Y =Yy | x) = h(x,]/) = (28)

where Y is a random variable with Y € {-1, +1}

31

A Probabilistic View of Logistic Regression

» From a probabilistic view, logistic regression defines
the probability of a possible label y given the input x

1

Y = = = 8
polY =y |9 = bl) = o @)
where Y is a random variable with Y € {-1, +1}
» The previous prediction rule is equivalent to
A +1 ifp(Y=41|x)>p(Y =-1]|x)
= . 3 3 (29)
-1 ifp(Y=41]x)<p(Y=-1|x)

31

Parameter Estimation: Likelihood Function

Given the training set S = {(x1, y1), ..., (Xm, Ym)}, the
likelihood function is defined as

Lik(x) = n Pw(yi | xi) (30)
i=1

32

Parameter Estimation: Likelihood Function

Given the training set S = {(x1, y1), ..., (Xm, Ym)}, the
likelihood function is defined as

m
Lik(x) = n Pw(yi | xi) (30)
i=1
Likelihood Principle: All the information about w is
contained in the likelihood function for w given S.

[Berger and Wolpert, 1988]

32

Parameter Estimation: Maximum Likelihood

Given the training set S,

» Log-likelihood function

{(w) Zlogpw(yi | x:)

Zl g1+exp(y1<w X))

- Z log(1 + exp(—=yi(w, x;))) (31)
i1

33

Parameter Estimation: Maximum Likelihood

Given the training set S,

» Log-likelihood function

{(w)

Zlogpw(yi | x;)

Zl g1+exp(yz<w X))

- Z log(1 + exp(—=yi(w, x;))) (31)
i1

» Maximize the log-likelihood function
argmax 4 {(w) = argmin , — {(w) = argmin 4, L(hy, S)

learning with ERM is equivalent to the Maximum

Likelihood Estimation (MLE) in Statistics ?

Gradient Descent, revisited

Recall the gradient-based learning on the previous slide

(new) _ (old) N exp(_yi<w1xi>) o
N e ;‘ 1+ exp(-yi{w, xi)) (i)

= w4+ Y (1= p(yi | %) - yixs (32)
i=1

» If p(yi | xi) — 0, wrong prediction, maximal update

> If p(yi | x;) — 1, correct prediction, minimal update

34

Linear Regression

Hypothesis Class

» The hypothesis class of linear regression predictors is
defined as

%reg ={{w,x) we Rd} (33)

> One example hypothesis /1 € #ieg

h(x) = (w, x) (34)

36

Problem Statement

Given the training set S, in this case,
{(x1, 1), ..., (x5,y5)}, find h € Heg such that hi(x) gives
the best (linear) relation between x and y

y

37

» Loss function

L(h, (x,y)) = (h(x) - y)* = (w'x —y)* (35)

38

» Loss function

L(h, (x,y)) = (h(x) - y)* = (w'x —y)* (35)

» Given the training set S, the corresponding empirical
risk function of linear regression is defined as

1 m
L(h,S) = — > (h(xi) = yi)’ (36)
i=1
which is called Mean Squared Error (MSE).

38

Visualization

For a 1-D case, the loss function
m

1
L(h,S) = — > (h(xi) = yi)’ (37)
i=1
can be visualized as

y

/ x
.

39

Empirical Risk Minimization

» The ERM problem
1 m
argmin Ls(hy) = argmin - Z((ZU,XO -]/z‘)2 (38)
w w i=1

» Compute the gradient and set it to be zero
23 (w,x) — ywi=0
- w, X Yi)xi =
Z<w/xi>xi = YiXi

40

Empirical Risk Minimization (I1)

To isolate w for solution, we have

> (w, xi)x; = (w'x;)x; = (x;ix])w

i(xixf)w = i yixi (39)
i=1 i=1

» then, rewrite it as
Aw=D> (40)

A= i xixl-T b = i Yixi (41)

with

41

» If A is invertible, the solution of the ERM problem is

w=A"b (42)

42

» If A is invertible, the solution of the ERM problem is
w=A"b (42)

» If A is not invertible, consider the eigen
decomposition of A = UDUT, and compute the
generalized inverse A* = UD*UT, then

w=A"D (43)

with D = diag(dy, ..., d;,0,...,0), D* is defined as

1 1
+ _ . _ —
D —dlag(dl,...,di,o,...,O) (44)

42

Verification of Generalized Inverse

" dy

£

B

D* =

» A =UDD'
» AT =UD*D'

AAT = (45)

{» Regularization

» Another common way of addressing the
non-invertible issue is to add a constraint on w as

Ls () = = O (o) = yiP + Allwl? (46
i=1

where A is the regularization parameter

» Gradient of the new Lg(/,,) as

dLs,t,(hw) 2 <
o o 2 ;«w,xl) —yxi+Aw (47)

44

{» Regularization

» Solution: with the notations A and b defined in Eq.

(41)
w = (A+AI)7'b (48)

» Exercise: Prove Eq. (48)

45

{» Regularization

» Solution: with the notations A and b defined in Eq.

(41)
w = (A+AI)7'b (48)

» A + Alis invertible, when d; + A # 0, Vi

A+ AI=UDU + AI=UMD + ADUT (49)

» Exercise: Prove Eq. (48)

45

{» Regularization

» Solution: with the notations A and b defined in Eq.
(41)
w = (A+AI)7'b (48)

» A + Alis invertible, when d; + A # 0, Vi
A+ AI=UDU + AI=UMD + ADUT (49)

» Regularization will be further discussed in the
following two lectures

> Model selection
> Regularization and stability

» Exercise: Prove Eq. (48)

45

{> Regularization: lllustration

Consider a 2-D case, where x = (x1, x2) and w = (w1, wy)
1 m
Ls,ty(hw) = — Z}(hu,(x,-) —yi + Mlwl” (50)
1=

Visualization of both components with their contour plots

w2

46

{> Regularization: lllustration

Consider a 2-D case, where x = (x1, x2) and w = (w1, wy)
1 m
Ls,ty(hw) = — Z}(hu,(x,-) —yi + Mlwl” (50)
1=

Visualization of both components with their contour plots

46

{> Regularization: lllustration

Consider a 2-D case, where x = (x1, x2) and w = (w1, wy)
1 m
Ls,ty(hw) = — Z}(hu,(x,-) —yi + Mlwl” (50)
1=

Visualization of both components with their contour plots

w2
MSE
K jz Regularization .
4

{> Regularization: lllustration

Consider a 2-D case, where x = (x1, x2) and w = (w1, wy)
1 m
Lsty () = — Z}(hu,(x,-) —yi + Mlwl” (50)
1=

Visualization of both components with their contour plots

w2
MSE
Minimizing Ls ¢,(hw)
is to find a tradeoff
between these two
&J o components
K jz Regularization
46

A Probabilistic View of Linear Regression

Consider the loss function Ls(/) defined in equation 46,

exp(-Ls(h)) = exp{- % D (i) = yi? = AP}
i=1

47

A Probabilistic View of Linear Regression

Consider the loss function Ls(/) defined in equation 46,
1 m
xp(-Ls(h) = exp{—— > (i(x) =y = Mllw|’}
i=1

o« exp{- Z(h(xi) —yi)?*}texp { - lwl?*}
i=1

47

A Probabilistic View of Linear Regression

Consider the loss function Ls(/) defined in equation 46,

exp(—Ls(h))

exp {3 (h(xp) ~ yi)? ~ Aol
i=1

o« exp{- Z(h(xi) —yi)?*}texp { - lwl?*}
i=1

[Texp { - (hx) ~ o} - exp { -)

i=1

47

A Probabilistic View of Linear Regression

Consider the loss function Ls(/) defined in equation 46,

exp(-Ls(h)) = exp{- % D (i) = yi? = AP}
i=1

o« exp{- Z(h(xi) —yi)?*}texp { - lwl?*}
i=1

1

| | exp { - (h(x) =y} - exp { - I’}

N(ys | e, 3) ¥ @] 0,5)

-~
I
[

47

A Probabilistic View of Linear Regression (I1)

Minimize the loss function Ls(h) is equivalent to
maximizing the following objective function

exp(—Ls(h)) o« rl N(yi | h(x;), %) “N(w |0, %) (51)
i=1

> T2, N(yi | h(xi), %): likelihood function of the data S

> N(w |0, %): prior distribution of w

» Maximizing equation 51 is equivalent to the maximum
a posteriori estimation

48

Polynomial Regression

Some learning tasks require nonlinear predictors with
single variable x € R

fw(x) = wo + wix + -+ + wyx" (52)

where w = (wg, w1, ..., wy,) is a vector of coefficients of
size n + 1.

49

Reference

Berger, J. O. and Wolpert, R. L. (1988).
The likelihood principle.

IMS.

Bishop, C. M. (2006).

Pattern recognition and machine learning.
springer.

@ Friedman, J., Hastie, T., and Tibshirani, R. (2001).
The elements of statistical learning.
Springer.

50

	Overview
	Review: Linear Functions
	Perceptron
	Logistic Regression
	Linear Regression

