CS 6316 Machine Learning Review of Linear Algebra and Probability

Yangfeng Ji

Department of Computer Science University of Virginia

ENGINEERING

- 1. Course Information
- 2. Basic Linear Algebra
- 3. Probability Theory
- 4. Statistical Estimation

Course Information

Yangfeng Ji

- Office hour: Wednesday 11 AM 12 PM
- Office: Rice 510
- Hanjie Chen (TA)
 - ▶ Office hour: Tuesday and Thursday 1 PM 2 PM
 - Office: Rice 442
- Kai Lin (TA)
 - Office hour: TBD

Understand the basic concepts and models from the computational perspective

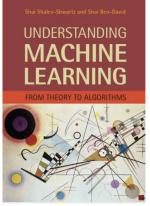
То

- provide a wide coverage of basic topics in machine learning
 - Example: PAC learning, linear predictors, SVM, boosting, kNN, decision trees, neural networks, etc
- discuss a few fundamental concepts in each topic
 - Example: learnability, generalization, overfitting/underfitting, VC dimension, max margins methods, etc.

Textbook

Shalev-Shwartz and Ben-David. Understanding Machine

Learning: From Theory to Algorithms. 2014¹



¹https:

//www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

This course will cover the basic materials on the following topics

- 1. Learning theory
- 2. Linear classification and regression
- 3. Model selection and validation
- 4. Boosting and support vector machines
- 5. Neural networks
- 6. Clustering and dimensionality reduction

The following topics will not be the emphasis of this course

- Statistical modeling
 - Statistical Learning and Graphical Models by Farzad Hassanzadeh
- Deep learning
 - Deep Learning for Visual Recognition by Vicente Ordonez-Roman

For fans of machine learning:

- Shalev-Shwartz. Understanding Machine Learning. 2014
- Mohri. Foundations of Machine Learning. Fall 2018

For fans of machine learning:

- Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning (2nd Edition). 2009
- Murphy. Machine Learning: A Probabilistic Perspective.
 2012
- Bishop. Pattern Recognition and Machine Learning. 2006
- Mohri, Rostamizadeh, and Talwalkar. Foundations of Machine Learning. 2nd Edition. 2018

Homeworks (75%)

▶ Five homeworks, each of them worth 15%

- Final project (22%)
 - Project proposal: 5%
 - Midterm report: 5%
 - ▶ Final project presentation: 6%
 - ► Final project report: 6%
- Class attendance (3%): we will take attendance at three randomly-selected lectures. Each is worth 1%

The final grade is threshold-based instead of percentage-based

Point range	Letter grade
[99 100]	A+
[94 99)	А
[90 94)	A-
[88 90)	B+
[83 88)	В
[80 83)	B-
[74 80)	C+
[67 74)	С
[60 67)	C-

- Homework submission will be accepted up to 72 hours late, with 20% deduction per 24 hours on the points as a penalty
- It is usually better if students just turn in what they have in time
- Submission will not be accepted if more than 72 hours late
- Do not submit the wrong homework late penalty will be applied if resubmit after deadline

Plagiarism, examples are

- in a homework submission, copying answers from others directly (even, with some minor changes)
- in a report, copying texts from a published paper (even, with some minor changes)
- in a code, using someone else's functions/implementations without acknowledging the contribution

Course webpage

http://yangfengji.net/uva-ml-course/
which contains all the information you need about this
course.

Piazza

https://piazza.com/virginia/spring2020/cs6316/home

Basic Linear Algebra

Consider the following system of equations

$$4x_1 - 5x_2 = -13$$

-2x_1 + 3x_2 = 9 (1)

In matrix notation, it can be written as a more compact from

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2}$$

with

$$\mathbf{A} = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -13 \\ 9 \end{bmatrix} \tag{3}$$

Basic Notations

$$\mathbf{A} = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

• $\mathbf{A} \in \mathbb{R}^{m \times n}$: a matrix with *m* rows and *n* columns

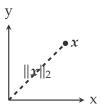
- The element on the *i*-th row and the *j*-th column is denoted as a_{i,j}
- ▶ $x \in \mathbb{R}^n$: a vector with *n* entries. By convention, an *n*-dimensional vector is often thought of as matrix with *n* rows and 1 column, known as a column vector.
 - The *i*-th element is denoted as x_i

- A norm of a vector ||x|| is informally a measure of the "length" of the vector.
- Formally, a norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies four properties
 - 1. $f(x) \ge 0$ for any $x \in \mathbb{R}^n$
 - 2. f(x) = 0 if and only if x = 0
 - 3. $f(ax) = |a| \cdot f(x)$ for any $x \in \mathbb{R}^n$
 - 4. $f(x + y) \le f(x) + f(y)$, for any $x, y \in \mathbb{R}^n$

 ℓ_2 Norm

The ℓ_2 norm of a vector $x \in \mathbb{R}^n$ is defined as

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$



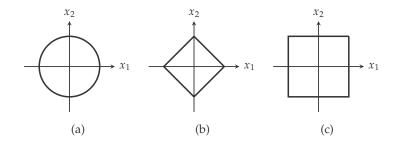
Exercise: prove ℓ_2 norm satisfies all four properties

(4)

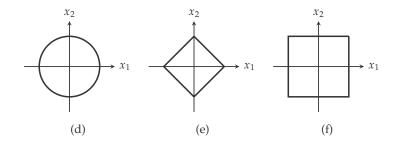
The ℓ_1 norm of a vector $x \in \mathbb{R}^n$ is defined as

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| \tag{5}$$

For a two-dimensional vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, which of the following plot is $\|\mathbf{x}\|_1 = 1$?



For a two-dimensional vector $x = (x_1, x_2) \in \mathbb{R}^2$, which of the following plot is $||x||_1 = 1$? Answer: (b)



Dot Product

The dot product of $x, y \in \mathbb{R}^n$ is defined as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$
 (6)

where x^{T} is the transpose of x.

For all $x, y \in \mathbb{R}^n$

$$\langle x, y \rangle | \le ||x||_2 ||y||_2$$
 (7)

with equality if and only if $x = \alpha y$ with $\alpha \in \mathbb{R}$

Proof:

Let $\tilde{x} = \frac{x}{\|x\|_2}$ and $\tilde{y} = \frac{y}{\|y\|_2}$, then \tilde{x} and \tilde{y} are both unit vectors. Based on the geometric interpretation on the previous slide, we have

$$\langle \tilde{x}, \tilde{y} \rangle \le 1$$
 (8)

if and only if $\tilde{x} = \tilde{y}$.

The Forbenius norm of a matrix $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{m \times n}$ denoted by $\|\cdot\|_F$ is defined as

$$\|\mathbf{A}\|_{F} = \left(\sum_{i} \sum_{j} a_{i,j}^{2}\right)^{1/2}$$
(9)

The Frobenius norm can be interpreted as the l₂ norm of a vector when treating A as a vector of size *mn*.

Two Special Matrices

The identity matrix, denoted as I ∈ ℝ^{n×n}], is a square matrix with ones on the diagonal and zeros everywhere else.

$$\mathbf{I} = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}$$
(10)

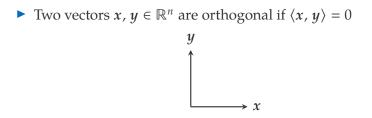
A diagonal matrix, denoted as $\mathbf{D} = \text{diag}(d_1, d_2, \dots, d_n)$, is a matrix where all non-diagonal elements are o.

$$\mathbf{D} = \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{bmatrix}$$
(11)

The *inverse* of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted as \mathbf{A}^{-1} , which is the unique matrix such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1} \tag{12}$$

- Non-square matrices do not have inverses (by definition)
- Not all square matrices are invertible
- The solution of the linear equations in Eq. (1) is $x = A^{-1}b$



A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is orthogonal, if all its columns are orthogonal to each other *and* normalized (orthonormal)

$$\langle u_i, u_j \rangle = 0, ||u_i|| = 1, ||u_j|| = 1$$
 (13)

for $i, j \in [n]$ and $i \neq j$

Furthermore, U^TU = I = UU^T, which further implies U⁻¹ = U^T A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as

$$\mathbf{A}^{\mathsf{T}} = \mathbf{A} \tag{14}$$

or, in other words,

$$a_{i,j} = a_{j,i} \quad \forall i, j \in [n] \tag{15}$$

Comments

- ► The identity matrix **I** is symmetric
- A diagonal matrix is symmetric

Every symmetric matrix A can be decomposed as

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} \tag{16}$$

with

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$
as a diagonal matrix (Slide 25)

- Q is an orthogonal matrix (Slide 27)
- *Exercise*: if **A** is invertible, show $\mathbf{A}^{-1} = \mathbf{U}\Lambda^{-1}\mathbf{U}^{\mathsf{T}}$ with $\Lambda^{-1} = \operatorname{diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})$

Symmetric Positive Semidefinite Matrices

A symmetric matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if

$$\boldsymbol{x}^{\mathsf{T}} \mathbf{P} \boldsymbol{x} \ge 0 \tag{17}$$

for all $x \in \mathbb{R}^n$.

A symmetric matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if

$$\boldsymbol{x}^{\mathsf{T}} \mathbf{P} \boldsymbol{x} \ge 0 \tag{17}$$

for all $x \in \mathbb{R}^n$.

Eigen decomposition (Slide 29) of **P** as

$$\mathbf{P} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}} \tag{18}$$

with $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and

$$\lambda_i \ge 0 \tag{19}$$

A symmetric matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ is positive definite if and only if

$$\boldsymbol{x}^{\mathsf{T}} \mathbf{P} \boldsymbol{x} > 0 \tag{20}$$

for all $x \in \mathbb{R}^n$.

• Eigen values of **P**,
$$\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$$
 with

$$\lambda_i > 0 \tag{21}$$

Exercise: if one of the eigen values λ_i < 0, show that you can also find a vector x such that x^TPx < 0</p>

The identity matrix **I** is

- a diagonal matrix?
- a symmetric matrix?
- an orthogonal matrix?
- a positive (semi-)definite matrix?

Further reference [Kolter and Do, 2015]

The identity matrix I is

- ▶ a diagonal matrix? √
- a symmetric matrix? \checkmark
- ▶ an orthogonal matrix? \checkmark
- ▶ a positive (semi-)definite matrix? \checkmark

Further reference [Kolter and Do, 2015]

Probability Theory

What is Probability?

The probability of landing heads is 0.52

Frequentist Probability represents the *long-run frequency* of an event

If we flip the coin many times, we expect it to land heads about 52% times

- **Frequentist** Probability represents the *long-run frequency* of an event
 - If we flip the coin many times, we expect it to land heads about 52% times
 - **Bayesian** Probability quantifies our *(un)certainty* about an event
 - We believe the coin is 52% of chance to land head on the next toss

Example scenarios of Bayesian interpretation of probability:

● 69[*]				Precipitation: 42% Humidity: 83% Wind: 2 mph			
				Ten	operature	Precipitation	Wind
	15%	15%	4%	<u>6%</u>	2%	9%	115
	2 PM	5 PM	8 PM	11 PM	2 AM	5 AM	8 AM
11 AM				Sat	Sun	Mon	Tue
11 AM	Wed	Thu	Fri	280			
	Wed	Thu	Fri	Sat	->	2	2

• Event X. Such as

- the coin will lead head on the next toss
- it will rain tomorrow

Sample space of $X \in \{\text{false, true}\}\$ or for simplicity $\{0, 1\}$

• Event X. Such as

- the coin will lead head on the next toss
- it will rain tomorrow
- Sample space of $X \in \{\text{false, true}\}\ \text{or for simplicity}\ \{0, 1\}$
- Probability P(X = x) or P(x)
- Let X be the event that the coin will lead head on the next toss, then the probability from the previous example is

$$P(X=1) = 0.52 \tag{22}$$

Given the binary random variable X and its sample space as $\{0, 1\}$

 $P(X = x) = \theta^x (1 - \theta)^{1 - x}$

with a single parameter θ as

$$\theta = P(X = 1)$$

Jacob Bernoulli

- Let *X* be the number of heads
- Sample space of $X \in \{0, 1, 2\}$

- Let *X* be the number of heads
- Sample space of $X \in \{0, 1, 2\}$
- Assume we use the same coin, the probability distribution of X

•
$$P(X = 0) = (1 - \theta)^2$$

- Let *X* be the number of heads
- Sample space of $X \in \{0, 1, 2\}$
- Assume we use the same coin, the probability distribution of X

•
$$P(X = 0) = (1 - \theta)^2$$

$$\blacktriangleright P(X=2) = \theta^2$$

- Let *X* be the number of heads
- Sample space of $X \in \{0, 1, 2\}$
- Assume we use the same coin, the probability distribution of X

•
$$P(X = 0) = (1 - \theta)^2$$

$$\blacktriangleright P(X=2) = \theta^2$$

$$\blacktriangleright P(X = 1) = \theta(1 - \theta) + (1 - \theta)\theta = 2\theta(1 - \theta)$$

Consider a general case, in which we toss the coin n times, then the random variable Y can be formulated as a binomial distribution

$$P(Y=k) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
(23)

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

is the binomial coefficient and

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 1$$

How to define the corresponding random variable?

▶
$$X \in \{1, 2, 3, 4, 5, 6\}$$

 $\blacktriangleright X \in \{100000, 010000, 001000, 000100, 000010, 000001\}$

Categorical Distribution

$$P(X = x) = \prod_{k=1}^{6} (\theta_k)^{x_k}$$
(24)

where

$$x = (x_1, x_2, \dots, x_6)$$

▶
$$x_k \in \{0, 1\}$$
, and

{θ_k}⁶_{k=1} are the parameters of this distribution, which is also the probability of side k showing up.

Repeat the previous event n times, the corresponding probability distribution is modeled as

$$P(X = x) = {n \choose x_1 \cdots x_K} \prod_{k=1}^K \theta_k^{x_k}$$
(25)

where $x = (x_1, ..., x_K)$ and each $x_k \in \{0, 1, 2, ..., n\}$ indicates the number of times that side *k* showing up.

$$\binom{n}{x_1\cdots x_K} = \frac{n!}{x_1!\cdots x_K!}$$

The sum of $\{x_k\}$ follows the constraint:

$$\sum_{k=1}^{K} x_k = n$$

Gaussian Distribution

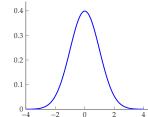
A random variable $X \in \mathbb{R}$ is said to follow a normal (or Gaussian) distribution $\mathcal{N}(\mu, \sigma^2)$ if its probability density function is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (26)

μ: mean

• σ^2 : variance

• Probability of $X \in [a, b]$: $P(a \le X \le b) = \int_a^b f(x) dx$

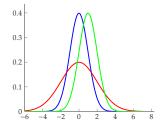


44

Gaussian Distribution (II)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
(27)

There examples of Gaussian distributions



- **Blue**: $\mathcal{N}(0, 1)$ (standard normal distribution)
- ▶ **Red**: $\mathcal{N}(0, 2)$
- ► Green: *N*(1, 1)

Modeling two random variables together with a **joint** distribution

$$P(X,Y) \tag{28}$$

Related concepts

- Independence
- Conditional probability and chain rule
- Bayes rule

Independence

Definition Two random variable *X* and *Y* are independent with each other, if we can represent the joint probability as the product of their marginal distributions for *any* values of *X* and *Y*, or mathematically,

$$P(X, Y) = P(X) \cdot P(Y)$$
(29)

Marginal distributions

$$P(X) = \sum_{Y} P(X, Y) \quad (30)$$
$$P(Y) = \sum_{X} P(X, Y) \quad (31)$$

Independence

Definition Two random variable *X* and *Y* are independent with each other, if we can represent the joint probability as the product of their marginal distributions for *any* values of *X* and *Y*, or mathematically,

$$P(X, Y) = P(X) \cdot P(Y)$$
⁽²⁹⁾

Marginal distributions

$$P(X) = \sum_{Y} P(X, Y) \quad (30)$$
$$P(Y) = \sum_{X} P(X, Y) \quad (31)$$

- X: whether it is cloudy
- Y: whether it will rain

$$P(X \cap Y)$$
 $X = 0$ $X = 1$ $Y = 0$ 0.350.15 $Y = 1$ 0.050.45

Conditional Probability

Conditional probability of *Y* given *X*

$$P(Y \mid X) = \frac{P(X, Y)}{P(X)}$$

(32)

Example: document classification

► X: a document

Y: the label of this document

A special case: if X and Y are independent

$$P(Y \mid X) = P(Y) \tag{33}$$

Intuitively, it means *Knowing X does not provide any new information about Y*

- ► *X*: whether it is cloudy
- ► *Y*: whether it will rain

P(X, Y)	X = 0	X = 1
Y = 0	0.35	0.15
Y = 1	0.05	0.45

- ► *X*: whether it is cloudy
- ► *Y*: whether it will rain

P(X, Y)	X = 0	X = 1
Y = 0	0.35	0.15
Y = 1	0.05	0.45

The probability density function of a multivariate Gaussian distribution $\mathcal{N}(\mu, \Sigma)$ is defined as

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$
(34)

where

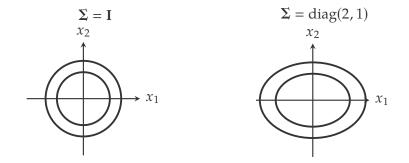
- μ is the *n*-dimensional mean vector and
- Σ is the *n* × *n* covariance matrix.

Covariance Matrix Σ

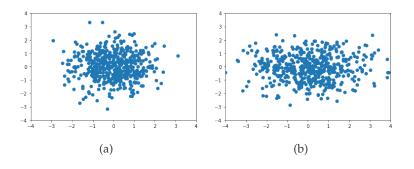
Assume μ = 0, the probability density function is

$$f(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{x}\right)$$
 (35)

In general, $\boldsymbol{\Sigma}$ is required to be a symmetric positive definite matrix



Sampling from Gaussians



(a) :
$$\Sigma = I$$

(b) : $\Sigma = diag(2, 1)$

Exercise: Sample from an arbitrary Gaussian distribution

Sum Rule

Given two random variables X and Y describing the same experiment, without any additional assumption we have

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$
(36)

• If $X \cap Y = \emptyset$, then

 $P(X \cap Y) = 0 \quad \text{and} \quad P(X \cup Y) = P(X) + P(Y) \tag{37}$

Exercise: Prove the following inequality by generalizing the sum rule in

$$P(\bigcup_{i=1}^{n} X_i) \le \sum_{i=1}^{n} P(X_i)$$
 (38)

This inequality is called the union bound.

Chain Rule

Any joint probability of two random variable can be decomposed as

$$P(X, Y) = P(X) \cdot P(Y \mid X) = P(Y) \cdot P(X \mid Y)$$
(39)

No independence assumption is needed

Chain Rule

Any joint probability of two random variable can be decomposed as

$$P(X, Y) = P(X) \cdot P(Y \mid X) = P(Y) \cdot P(X \mid Y)$$
(39)

No independence assumption is needed

The chain rule can be easily generalized

$$P(X_{1}, X_{2}, \cdots, X_{k}) = P(X_{1})P(X_{2}, \cdots, X_{k} \mid X_{1})$$

= $P(X_{1})P(X_{2} \mid X_{1})P(X_{3}, \cdots, X_{k} \mid X_{2}, X_{1})$
= $P(X_{1})P(X_{2} \mid X_{1})P(X_{3} \mid X_{2}, X_{1}) \cdots$
 $P(X_{k} \mid X_{1}, \cdots, X_{k-1})$ (40)

Given

- P(Y): prior probability, and
- P(X | Y): conditional probability of X given Y,

we can compute the probability $P(Y \mid X)$ using Bayes' rule as

$$P(Y \mid X) = \frac{P(Y)P(X \mid Y)}{P(X)}$$
(41)

where

$$P(X) = \sum_{Y} P(Y)P(X \mid Y)$$
(42)

Two random variables, alarm A and burglar B

- ▶ P(A = 1 | B = 1) = 0.99: burglar happens, alarm rings
- ► P(A = 1 | B = 0) = 0.001: burglar does not happen, alarm rings

Question: if the alarm rang, what is the probability of a burglar happened?

$$P(B = 1 \mid A = 1) \tag{43}$$

Example: The burglar alarm (II)

- ▶ P(A = 1 | B = 1) = 0.99: burglar happens ⇒ alarm rings
- ► P(A = 1 | B = 0) = 0.001: burglar does not happen \Rightarrow alarm rings
- P(B = 1) = 0.01: burglar rate

Question: if the alarm rang, what is the probability of a burglar happened?

$$\begin{split} P(B = 1 \mid A = 1) \\ &= \frac{P(B = 1)P(A = 1 \mid B = 1)}{P(A = 1 \mid B = 1)P(B = 1) + P(A = 1 \mid B = 0)P(B = 0)} \\ &= \frac{0.01 \times 0.99}{(0.01 \times 0.99) + (0.001 \times (1 - 0.01))} \\ &\approx 0.91 \end{split}$$

Example: The burglar alarm (II)

- ▶ P(A = 1 | B = 1) = 0.99: burglar happens ⇒ alarm rings
- ► P(A = 1 | B = 0) = 0.001: burglar does not happen \Rightarrow alarm rings
- P(B = 1) = 0.01: burglar rate

Question: if the alarm rang, what is the probability of a burglar happened?

$$P(B = 1 | A = 1)$$

$$= \frac{P(B = 1)P(A = 1 | B = 1)}{P(A = 1 | B = 1)P(B = 1) + P(A = 1 | B = 0)P(B = 0)}$$

$$= \frac{0.01 \times 0.99}{(0.01 \times 0.99) + (0.001 \times (1 - 0.01))}$$

$$\approx 0.91$$

Further Question: What if P(A = 1 | B = 0) = 0.01?

Expectation

The expectation or expected value of a function h(x) with respect to a probability distribution P(X) is defined as

$$E[h(x)] = \sum_{x} P(x)h(x)$$
(44)

Expectation

The expectation or expected value of a function h(x) with respect to a probability distribution P(X) is defined as

$$E[h(x)] = \sum_{x} P(x)h(x)$$
(44)

The number of ice creams [Eisenstein, 2018]

- If it is sunny, Lucia will eat four ice creams
- If it is rainy, she will eat only one ice cream
- There is a 90% chance it will be rainy

The expected number of ice creams she will eat is

$$(1 - 0.9) \times 4 + 0.9 \times 1 = 1.3$$

(45)

Mean

Let h(x) = x, the expectation is the mean value of the random variable X (discrete random variable)

$$E[X] = \sum_{x} xP(x) \tag{46}$$

or, (continuous random variable)

$$E[X] = \int_{x} x f(x) \tag{47}$$

• A Bernoulli distribution P(X) with the parameter θ , $P(X = x) = \theta^x (1 - \theta)^{(1-x)}$

$$E[X] = 1 \cdot \theta + 0 \cdot (1 - \theta) = \theta \tag{48}$$

The variance of a random variable gives a measure of how much the values of this random variable vary

$$Var[X] = E [(X - E [X])^{2}]$$

= $E [X^{2} - 2XE [X] + E [X]^{2}]$
= $E [X^{2}] - 2E [X] E [X] + E [X]^{2}$
= $E [X^{2}] - E [X]^{2}$ (49)

A Bernoulli distribution P(X) with the parameter θ , $P(X = x) = \theta^{x}(1 - \theta)^{(1-x)}$

$$Var[X] = E[X^{2}] - E[X]^{2} = p - p^{2}$$
(50)

Exercise: Compute the mean and variance of a categorical distribution

Statistical Estimation

Statistics is, in a certain sense, the inverse of probability theory.

- Observed: values of random variables
- Unknown: the model
- Task: infer the model from the observed data

For a probability $P(X; \theta)$ with θ as the unknown parameter, likelihood-based estimation with observations $\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\}$ requires two steps

- 1. Define a likelihood function with observations
- 2. Optimize the likelihood function to estimate θ

The likelihood function of $\boldsymbol{\theta}$ is defined as

$$L(\theta) = \prod_{i=1}^{n} P(x^{(i)}; \theta)$$
(51)

Alternatively, we often use the log-likelihood function to avoid the numerical issues

$$\ell(\theta) = \log L(\theta)$$

= $\sum_{i=1}^{n} \log P(x^{(i)}; \theta)$ (52)

Maximum Likelihood Estimation: a method of estimating the parameter by maximizing the (log-)likelihood function

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \ell(\theta) \tag{53}$$

Usually, this can be done with the following equation

$$\frac{\partial \ell(\theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log P(x^{(i)}; \theta)}{\partial \theta} = 0$$
(54)

Consider a Bernoulli distribution $P(X; \theta)$ with the parameter $\theta = P(X = 1; \theta)$ unknown

$$P(X = x; \theta) = \theta^{x} (1 - \theta)^{(1-x)}$$
(55)

Consider a Bernoulli distribution $P(X; \theta)$ with the parameter $\theta = P(X = 1; \theta)$ unknown

$$P(X = x; \theta) = \theta^{x} (1 - \theta)^{(1-x)}$$
(55)

With *n* observations $\{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$, the likelihood function is

$$\ell(\theta) = \sum_{i=1}^{n} \log P(x^{(i)}; \theta)$$

=
$$\sum_{i=1}^{n} \{x^{(i)} \log \theta + (1 - x^{(i)}) \log(1 - \theta)\}$$
(56)

The derivative with respect to $\boldsymbol{\theta}$

$$\frac{\partial \ell(\theta)}{\partial \theta} = \sum_{i=1}^{n} \{ \frac{x^{(i)}}{\theta} - \frac{1 - x^{(i)}}{1 - \theta} \}$$
(57)

The derivative with respect to $\boldsymbol{\theta}$

$$\frac{\partial \ell(\theta)}{\partial \theta} = \sum_{i=1}^{n} \{ \frac{x^{(i)}}{\theta} - \frac{1 - x^{(i)}}{1 - \theta} \}$$
(57)

Let
$$\frac{\partial \ell(\theta)}{\partial \theta} = 0$$
, we have

$$\theta = \frac{\sum_{i=1}^{n} x^{(i)}}{n} \tag{58}$$

Assume the n = 7 observations are

 $\{0, 1, 1, 0, 0, 1, 0\},\$

then

$$\theta = \frac{3}{7} \tag{59}$$

Further Reference [Murphy, 2012, Chap 5 & 6]

Assume the n = 7 observations are

 $\{0, 1, 1, 0, 0, 1, 0\},\$

then

$$\theta = \frac{3}{7} \tag{59}$$

Likelihood Principle: With *x* observed, all relevant information of inferring θ is contained in the likelihood function.

Further Reference [Murphy, 2012, Chap 5 & 6]

Eisenstein, J. (2018). Natural Language Processing. MIT Press.

Kolter, Z. and Do, C. (2015). Linear algebra review and reference.

Murphy, K. P. (2012). *Machine learning: a probabilistic perspective*. MIT press.