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Course Information



Instructors

I Yangfeng Ji
I Office hour: Wednesday 11 AM - 12 PM
I Office: Rice 510

I Hanjie Chen (TA)
I Office hour: Tuesday and Thursday 1 PM – 2 PM
I Office: Rice 442

I Kai Lin (TA)
I Office hour: TBD
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Goal

Understand the basic concepts and models from the
computational perspective

To

I provide a wide coverage of basic topics in machine
learning
I Example: PAC learning, linear predictors, SVM, boosting,

kNN, decision trees, neural networks, etc
I discuss a few fundamental concepts in each topic

I Example: learnability, generalization,
overfitting/underfitting, VC dimension, max margins
methods, etc.
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Textbook

Shalev-Shwartz and Ben-David. Understanding Machine
Learning: From Theory to Algorithms. 20141

1https:
//www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
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Outline

This course will cover the basic materials on the following
topics

1. Learning theory
2. Linear classification and regression
3. Model selection and validation
4. Boosting and support vector machines
5. Neural networks
6. Clustering and dimensionality reduction
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Outline (II)

The following topics will not be the emphasis of this course

I Statistical modeling
I Statistical Learning and Graphical Models by Farzad

Hassanzadeh
I Deep learning

I Deep Learning for Visual Recognition by Vicente
Ordonez-Roman
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Reference Courses

For fans of machine learning:

I Shalev-Shwartz. Understanding Machine Learning. 2014
I Mohri. Foundations of Machine Learning. Fall 2018
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Reference Books

For fans of machine learning:

I Hastie, Tibshirani, and Friedman. The Elements of
Statistical Learning (2nd Edition). 2009

I Murphy. Machine Learning: A Probabilistic Perspective.
2012

I Bishop. Pattern Recognition and Machine Learning. 2006
I Mohri, Rostamizadeh, and Talwalkar. Foundations of

Machine Learning. 2nd Edition. 2018
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Homework and Grading Policy

I Homeworks (75%)
I Five homeworks, each of them worth 15%

I Final project (22%)
I Project proposal: 5%
I Midterm report: 5%
I Final project presentation: 6%
I Final project report: 6%

I Class attendance (3%): we will take attendance at three
randomly-selected lectures. Each is worth 1%
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Grading Policy

The final grade is threshold-based instead of percentage-based
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Late Penalty

I Homework submission will be accepted up to 72 hours late,
with 20% deduction per 24 hours on the points as a penalty

I It is usually better if students just turn in what they have in
time

I Submission will not be accepted if more than 72 hours late
I Do not submit the wrong homework — late penalty will be

applied if resubmit after deadline
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Violation of the Honor Code

Plagiarism, examples are

I in a homework submission, copying answers from others
directly (even, with some minor changes)

I in a report, copying texts from a published paper (even,
with some minor changes)

I in a code, using someone else’s functions/implementations
without acknowledging the contribution
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Webpages

I Course webpage
http://yangfengji.net/uva-ml-course/

which contains all the information you need about this
course.

I Piazza
https://piazza.com/virginia/spring2020/cs6316/home
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Basic Linear Algebra



Linear Equations

Consider the following system of equations

4x1 − 5x2 � −13
−2x1 + 3x2 � 9

(1)

In matrix notation, it can be written as a more compact from

Ax � b (2)

with

A �

[
4 −5
−2 3

]
x �

[
x1

x2

]
b �

[
−13

9

]
(3)
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Basic Notations

A �

[
4 −5
−2 3

]
x �

[
x1

x2

]
b �

[
−13

9

]
I A ∈ Rm×n : a matrix with m rows and n columns

I The element on the i-th row and the j-th column is denoted
as ai , j

I x ∈ Rn : a vector with n entries. By convention, an
n-dimensional vector is often thought of as matrix with n
rows and 1 column, known as a column vector.
I The i-th element is denoted as xi
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Vector Norms

I A norm of a vector ‖x‖ is informally a measure of the
“length” of the vector.

I Formally, a norm is any function f : Rn → R that satisfies
four properties
1. f (x) ≥ 0 for any x ∈ Rn

2. f (x) � 0 if and only if x � 0
3. f (ax) � |a | · f (x) for any x ∈ Rn

4. f (x + y) ≤ f (x) + f (y), for any x , y ∈ Rn
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`2 Norm

The `2 norm of a vector x ∈ Rn is defined as

‖x‖2 �

√√ n∑
i�1

x2
i (4)

x

y

x

‖x‖2

Exercise: prove `2 norm satisfies all four properties
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`1 Norms

The `1 norm of a vector x ∈ Rn is defined as

‖x‖1 �

n∑
i�1
|xi | (5)
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Quiz

For a two-dimensional vector x � (x1 , x2) ∈ R2, which of the
following plot is ‖x‖1 � 1?

Answer: (b)

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)
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Quiz
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x1
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(e)
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(f)

21



Dot Product

The dot product of x , y ∈ Rn is defined as

〈x , y〉 � xTy �

n∑
i�1

xi yi (6)

where xT is the transpose of x.

I ‖x‖22 � 〈x , x〉
I If x � (0, 0, . . . , 1︸︷︷︸

xi

, . . . , 0), then 〈x , y〉 � yi

I If x is an unit vector (‖x‖2 � 1), then 〈x , y〉 is the projection
of y on the direction of x

x

y
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Cauchy-Schwarz Inequality

For all x , y ∈ Rn

|〈x , y〉| ≤ ‖x‖2‖y‖2 (7)

with equality if and only if x � αy with α ∈ R

Proof:
Let x̃ �

x
‖x‖2 and ỹ �

y
‖y‖2 , then x̃ and ỹ are both unit vectors.

Based on the geometric interpretation on the previous slide, we
have

〈x̃ , ỹ〉 ≤ 1 (8)

if and only if x̃ � ỹ.
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Frobenius Norm

The Forbenius norm of a matrix A � [ai , j] ∈ Rm×n denoted by
‖ · ‖F is defined as

‖A‖F �
(∑

i

∑
j

a2
i , j

)1/2 (9)

I The Frobenius norm can be interpreted as the `2 norm of a
vector when treating A as a vector of size mn.
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Two Special Matrices

I The identity matrix, denoted as I ∈ Rn×n], is a square
matrix with ones on the diagonal and zeros everywhere
else.

I �


1

. . .

1

 (10)

I A diagonal matrix, denoted as D � diag(d1 , d2 , . . . , dn), is a
matrix where all non-diagonal elements are 0.

D �


d1

. . .

dn

 (11)
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Inverse

The inverse of a square matrix A ∈ Rn×n is denoted as A−1,
which is the unique matrix such that

A−1A � I � AA−1 (12)

I Non-square matrices do not have inverses (by definition)
I Not all square matrices are invertible
I The solution of the linear equations in Eq. (1) is x � A−1b
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Orthogonal Matrices

I Two vectors x , y ∈ Rn are orthogonal if 〈x , y〉 � 0

x

y

I A square matrix U ∈ Rn×n is orthogonal, if all its columns
are orthogonal to each other and normalized (orthonormal)

〈ui , u j〉 � 0, ‖ui ‖ � 1, ‖u j ‖ � 1 (13)

for i , j ∈ [n] and i , j

I Furthermore, UTU � I � UUT, which further implies
U−1 � UT
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Symmetric Matrices

A symmetric matrix A ∈ Rn×n is defined as

AT
� A (14)

or, in other words,

ai , j � a j,i ∀i , j ∈ [n] (15)

Comments

I The identity matrix I is symmetric
I A diagonal matrix is symmetric
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Eigen Decomposition

Every symmetric matrix A can be decomposed as

A � UΛUT (16)

with

I Λ �


λ1

. . .

λn

 as a diagonal matrix (Slide 25)

I Q is an orthogonal matrix (Slide 27)
I Exercise: if A is invertible, show A−1 � UΛ−1UT with
Λ−1 � diag( 1

λ1
, . . . , 1

λn
)
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Symmetric Positive Semidefinite Matrices

A symmetric matrix P ∈ Rn×n is positive semidefinite if and
only if

xTPx ≥ 0 (17)

for all x ∈ Rn .

Eigen decomposition (Slide 29) of P as

P � UΛUT (18)

with Λ � diag(λ1 , . . . , λn) and

λi ≥ 0 (19)
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Symmetric Positive Definite Matrices

A symmetric matrix P ∈ Rn×n is positive definite if and only if

xTPx > 0 (20)

for all x ∈ Rn .

I Eigen values of P, Λ � diag(λ1 , . . . , λn)with

λi > 0 (21)

I Exercise: if one of the eigen values λi < 0, show that you
can also find a vector x such that xTPx < 0
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Quiz

The identity matrix I is

I a diagonal matrix?

X

I a symmetric matrix?

X

I an orthogonal matrix?

X

I a positive (semi-)definite matrix?

X

Further reference [Kolter and Do, 2015]

32



Quiz

The identity matrix I is

I a diagonal matrix? X
I a symmetric matrix? X
I an orthogonal matrix? X
I a positive (semi-)definite matrix? X

Further reference [Kolter and Do, 2015]
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Probability Theory



What is Probability?

The probability of landing heads is 0.52
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Two interpretations

Frequentist Probability represents the long-run frequency of an
event
I If we flip the coin many times, we expect it to

land heads about 52% times

Bayesian Probability quantifies our (un)certainty about an
event
I We believe the coin is 52% of chance to land

head on the next toss
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Bayesian Interpretation

Example scenarios of Bayesian interpretation of probability:
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Binary Random Variables

I Event X. Such as
I the coin will lead head on the next toss
I it will rain tomorrow

I Sample space of X ∈ {false, true} or for simplicity {0, 1}

I Probability P(X � x) or P(x)
I Let X be the event that the coin will lead head on the next toss,

then the probability from the previous example is

P(X � 1) � 0.52 (22)
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Bernoulli Distribution

Given the binary random variable X
and its sample space as {0, 1}

P(X � x) � θx(1 − θ)1−x

with a single parameter θ as

θ � P(X � 1)
Jacob Bernoulli
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Tossing a Coin Twice?

I Let X be the number of heads
I Sample space of X ∈ {0, 1, 2}

I Assume we use the same coin, the probability distribution
of X
I P(X � 0) � (1 − θ)2

I P(X � 2) � θ2

I P(X � 1) � θ(1 − θ) + (1 − θ)θ � 2θ(1 − θ)
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General Case: Binomial Distribution

Consider a general case, in which we toss the coin n times, then
the random variable Y can be formulated as a binomial
distribution

P(Y � k) �
(
n
k

)
θk(1 − θ)n−k (23)

where (
n
k

)
�

n!
k!(n − k)!

is the binomial coefficient and

n! � n · (n − 1) · (n − 2) · · · 1
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Tossing a Dice

How to define the corresponding random variable?

I X ∈ {1, 2, 3, 4, 5, 6}
I X ∈ {100000, 010000, 001000, 000100, 000010, 000001}
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Categorical Distribution

P(X � x) �
6∏

k�1
(θk)xk (24)

where

I x � (x1 , x2 , . . . , x6)
I xk ∈ {0, 1}, and
I {θk}6k�1 are the parameters of this distribution, which is

also the probability of side k showing up.

42



Multinomial Distribution

Repeat the previous event n times, the corresponding
probability distribution is modeled as

P(X � x) �
(

n
x1 · · · xK

) K∏
k�1

θxk
k (25)

where x � (x1 , . . . , xK) and each xk ∈ {0, 1, 2, . . . , n} indicates
the number of times that side k showing up.(

n
x1 · · · xK

)
�

n!
x1! · · · xK!

The sum of {xk} follows the constraint:
K∑

k�1
xk � n
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Gaussian Distribution

A random variable X ∈ R is said to follow a normal (or
Gaussian) distribution N(µ, σ2) if its probability density
function is given by

f (x) � 1√
2πσ2

exp
(
−
(x − µ)2

2σ2

)
(26)

I µ: mean
I σ2: variance
I Probability of X ∈ [a , b]: P(a ≤ X ≤ b) �

∫ b
a f (x)dx

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4
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Gaussian Distribution (II)

f (x) � 1√
2πσ2

exp
(
−
(x − µ)2

2σ2

)
(27)

There examples of Gaussian distributions

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

I Blue: N(0, 1) (standard normal distribution)
I Red: N(0, 2)
I Green: N(1, 1)
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Probability of Two Random Variables

Modeling two random variables together with a joint
distribution

P(X,Y) (28)

Related concepts

I Independence
I Conditional probability and chain rule
I Bayes rule
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Independence

Definition Two random variable X and Y are independent with
each other, if we can represent the joint probability as the
product of their marginal distributions for any values of X and
Y, or mathematically,

P(X,Y) � P(X) · P(Y) (29)

Marginal distributions

P(X) �

∑
Y

P(X,Y) (30)

P(Y) �

∑
X

P(X,Y) (31)

I X: whether it is cloudy
I Y: whether it will rain

P(X ∩ Y) X � 0 X � 1

Y � 0 0.35 0.15
Y � 1 0.05 0.45
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Conditional Probability

Conditional probability of Y given X

P(Y | X) � P(X,Y)
P(X) (32)

Example: document classification

I X: a document
I Y: the label of this document

A special case: if X and Y are independent

P(Y | X) � P(Y) (33)

Intuitively, it means Knowing X does not provide any new
information about Y
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Conditional Probability

I X: whether it is cloudy
I Y: whether it will rain

P(X,Y) X � 0 X � 1

Y � 0 0.35 0.15
Y � 1 0.05 0.45

I P(Y | X � 1):
I P(Y � 0 | X � 1) � 0.25,
I P(Y � 1 | X � 1) � 0.75

I P(Y): P(Y � 0) � P(Y � 1) � 0.5
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Multivariate Gaussian

The probability density function of a multivariate Gaussian
distribution N(µ,Σ) is defined as

f (x) � 1
(2π)n/2

1
|Σ|1/2

exp
(
− 1

2 (x − µ)
TΣ−1(x − µ)

)
(34)

where

I µ is the n-dimensional mean vector and
I Σ is the n × n covariance matrix.
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Covariance Matrix Σ

Assume µ � 0, the probability density function is

f (x) ∝ exp
(
− 1

2 xTΣ−1x
)

(35)

In general, Σ is required to be a symmetric positive definite
matrix

Σ � I

x1

x2
Σ � diag(2, 1)

x1

x2
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Sampling from Gaussians

(a) (b)

(a) : Σ � I

(b) : Σ � diag(2, 1)

Exercise: Sample from an arbitrary Gaussian distribution
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Sum Rule

Given two random variables X and Y describing the same
experiment, without any additional assumption we have

P(X ∪ Y) � P(X) + P(Y) − P(X ∩ Y) (36)

I If X ∩ Y � ∅, then

P(X ∩ Y) � 0 and P(X ∪ Y) � P(X) + P(Y) (37)

I Exercise: Prove the following inequality by generalizing the
sum rule in

P(∪n
i�1Xi) ≤

n∑
i�1

P(Xi) (38)

This inequality is called the union bound.
53



Chain Rule

Any joint probability of two random variable can be
decomposed as

P(X,Y) � P(X) · P(Y | X) � P(Y) · P(X | Y) (39)

No independence assumption is needed

The chain rule can be easily generalized

P(X1 ,X2 , · · · ,Xk) � P(X1)P(X2 , · · · ,Xk | X1)
� P(X1)P(X2 | X1)P(X3 , · · · ,Xk | X2 ,X1)
� P(X1)P(X2 | X1)P(X3 | X2 ,X1) · · ·

P(Xk | X1 , · · · ,Xk−1) (40)
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Inverse Probability

Given

I P(Y): prior probability, and
I P(X | Y): conditional probability of X given Y,

we can compute the probability P(Y | X) using Bayes’ rule as

P(Y | X) � P(Y)P(X | Y)
P(X) (41)

where
P(X) �

∑
Y

P(Y)P(X | Y) (42)
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Example: The burglar alarm

Two random variables, alarm A and burglar B

I P(A � 1 | B � 1) � 0.99: burglar happens, alarm rings
I P(A � 1 | B � 0) � 0.001: burglar does not happen, alarm

rings
I P(B � 1) � 0.01: burglar rate

Question: if the alarm rang, what is the probability of a burglar
happened?

P(B � 1 | A � 1) (43)
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Example: The burglar alarm (II)

I P(A � 1 | B � 1) � 0.99: burglar happens⇒ alarm rings
I P(A � 1 | B � 0) � 0.001: burglar does not happen⇒

alarm rings
I P(B � 1) � 0.01: burglar rate

Question: if the alarm rang, what is the probability of a burglar
happened?

P(B � 1 |A � 1)

�
P(B � 1)P(A � 1 | B � 1)

P(A � 1 | B � 1)P(B � 1) + P(A � 1 | B � 0)P(B � 0)

�
0.01 × 0.99

(0.01 × 0.99) + (0.001 × (1 − 0.01))
≈ 0.91

Further Question: What if P(A � 1 | B � 0) � 0.01?
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Expectation

The expectation or expected value of a function h(x)with
respect to a probability distribution P(X) is defined as

E [h(x)] �
∑

x

P(x)h(x) (44)

The number of ice creams [Eisenstein, 2018]
I If it is sunny, Lucia will eat four ice creams
I If it is rainy, she will eat only one ice cream
I There is a 90% chance it will be rainy

The expected number of ice creams she will eat is

(1 − 0.9) × 4 + 0.9 × 1 � 1.3 (45)
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Mean

I Let h(x) � x, the expectation is the mean value of the
random variable X (discrete random variable)

E [X] �
∑

x

xP(x) (46)

or, (continuous random variable)

E [X] �
∫

x
x f (x) (47)

I A Bernoulli distribution P(X)with the parameter θ,
P(X � x) � θx(1 − θ)(1−x)

E [X] � 1 · θ + 0 · (1 − θ) � θ (48)
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Variance

The variance of a random variable gives a measure of how
much the values of this random variable vary

Var[X] � E
[
(X − E [X])2

]
� E

[
X2 − 2XE [X] + E [X]2

]
� E

[
X2] − 2E [X]E [X] + E [X]2

� E
[
X2] − E [X]2 (49)
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Variance: Example

A Bernoulli distribution P(X)with the parameter θ,
P(X � x) � θx(1 − θ)(1−x)

Var[X] � E
[
X2] − E [X]2 � p − p2 (50)

Exercise: Compute the mean and variance of a categorical
distribution
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Statistical Estimation



Statistics is, in a certain sense, the inverse of probability theory.

I Observed: values of random variables
I Unknown: the model
I Task: infer the model from the observed data
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Likelihood-based Estimation

For a probability P(X; θ)with θ as the unknown parameter,
likelihood-based estimation with observations
{x(1) , x(2) , . . . , x(n)} requires two steps

1. Define a likelihood function with observations
2. Optimize the likelihood function to estimate θ
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Likelihood Function

The likelihood function of θ is defined as

L(θ) �
n∏

i�1
P(x(i); θ) (51)

Alternatively, we often use the log-likelihood function to avoid
the numerical issues

`(θ) � log L(θ)

�

n∑
i�1

log P(x(i); θ) (52)
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Maximum Likelihood Estimation

Maximum Likelihood Estimation: a method of estimating the
parameter by maximizing the (log-)likelihood function

θ̂ � argmax
θ

`(θ) (53)

Usually, this can be done with the following equation

∂`(θ)
∂θ

�

n∑
i�1

∂ log P(x(i); θ)
∂θ

� 0 (54)
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Example: Bernoulli Distribution

Consider a Bernoulli distribution P(X; θ)with the parameter
θ � P(X � 1; θ) unknown

P(X � x; θ) � θx(1 − θ)(1−x) (55)

With n observations {x(1) , x(2) , . . . , x(n)}, the likelihood
function is

`(θ) �

n∑
i�1

log P(x(i); θ)

�

n∑
i�1
{x(i) log θ + (1 − x(i)) log(1 − θ)} (56)
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Example: Bernoulli Distribution

Consider a Bernoulli distribution P(X; θ)with the parameter
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n∑
i�1
{x(i) log θ + (1 − x(i)) log(1 − θ)} (56)
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Example: Bernoulli Distribution (II)

The derivative with respect to θ

∂`(θ)
∂θ

�

n∑
i�1
{ x(i)

θ
− 1 − x(i)

1 − θ } (57)

Let ∂`(θ)∂θ � 0, we have

θ �

∑n
i�1 x(i)

n
(58)
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Example: Bernoulli Distribution (II)

The derivative with respect to θ
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n
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Example: Bernoulli Distribution (III)

Assume the n � 7 observations are

{0, 1, 1, 0, 0, 1, 0},

then
θ �

3
7 (59)

Likelihood Principle: With x observed, all relevant
information of inferring θ is contained in the likelihood
function.

Further Reference [Murphy, 2012, Chap 5 & 6]
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