CS 6316 Machine Learning

Dimensionality Reduction

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Overview

1. Reducing Dimensions
2. Principal Component Analysis
3. A Different Viewpoint of PCA

Reducing Dimensions

Curse of Dimensionality

What is the volume difference between two d-dimensional balls with radii $r_{1}=1$ and $r_{2}=0.99$

Curse of Dimensionality

What is the volume difference between two d-dimensional balls with radii $r_{1}=1$ and $r_{2}=0.99$

$$
\begin{aligned}
& -d=2: \frac{1}{2} \pi\left(r_{1}^{2}-r_{2}^{2}\right) \approx 0.03 \\
& -d=3: \frac{4}{3} \pi\left(r_{1}^{3}-r_{2}^{3}\right) \approx 0.12
\end{aligned}
$$

Curse of Dimensionality

What is the volume difference between two d-dimensional balls with radii $r_{1}=1$ and $r_{2}=0.99$

- $d=2: \frac{1}{2} \pi\left(r_{1}^{2}-r_{2}^{2}\right) \approx 0.03$
- $d=3: \frac{4}{3} \pi\left(r_{1}^{3}-r_{2}^{3}\right) \approx 0.12$
- General form: $\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}\left(r_{1}^{d}-r_{2}^{d}\right)$ with
$r_{2}^{d} \rightarrow 0$ when $d \rightarrow \infty$
- E.g., $r_{2}^{500}=0.00657$

Curse of Dimensionality

What is the volume difference between two d-dimensional balls with radii $r_{1}=1$ and $r_{2}=0.99$

- $d=2: \frac{1}{2} \pi\left(r_{1}^{2}-r_{2}^{2}\right) \approx 0.03$
- $d=3: \frac{4}{3} \pi\left(r_{1}^{3}-r_{2}^{3}\right) \approx 0.12$
- General form: $\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}\left(r_{1}^{d}-r_{2}^{d}\right)$ with $r_{2}^{d} \rightarrow 0$ when $d \rightarrow \infty$
- E.g., $r_{2}^{500}=0.00657$

Question: what will happen if we uniformly sample from a d-dimensional ball?

Curse of Dimensionality (II)

If we randomly sample 1 K unit vectors from a d-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

Curse of Dimensionality (II)

If we randomly sample 1 K unit vectors from a d-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

Figure: $d=100$

Curse of Dimensionality (II)

If we randomly sample 1 K unit vectors from a d-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

Figure: $d=500$

Curse of Dimensionality (II)

If we randomly sample 1 K unit vectors from a d-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

Figure: $d=1000$

Dimensionality Reduction

Dimensionality Reduction is the process of taking data in a high dimensional space and mapping it into a new space whose dimensionality is much smaller.

Dimensionality Reduction

Dimensionality Reduction is the process of taking data in a high dimensional space and mapping it into a new space whose dimensionality is much smaller.

Mathematically, it means

$$
\begin{equation*}
f: x \rightarrow \tilde{x} \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{d}, \tilde{x} \in \mathbb{R}^{n}$ with $n<d$

Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project $x=\left(x_{1}, x_{2}\right)$ into the direction along x_{1} or x_{2}

Question: Given these two data examples, which direction we should pick? x_{1} or x_{2} ?

Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project $x=\left(x_{1}, x_{2}\right)$ into the direction along x_{1} or x_{2}

Question: Given these two data examples, which direction we should pick? x_{1} or x_{2} ?

Reducing Dimensions: A toy example (II)

There is a better solution if we are allowed to rotate the coordinate

Reducing Dimensions: A toy example (II)

There is a better solution if we are allowed to rotate the coordinate

Pick u_{1}, then we preserve all the variance of the examples

Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect line

[Bishop, 2006, Section 12.1]

Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect line

We can follow the same idea by finding a direction that can preserve most of the variance of the examples
[Bishop, 2006, Section 12.1]

Principal Component Analysis

Formulation

Given a set of example $S=\left\{x_{1}, \ldots, x_{m}\right\}$

- Centering the data by removing the mean $\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$

$$
\begin{equation*}
x_{i} \leftarrow x_{i}-\bar{x} \quad \forall i \in[m] \tag{2}
\end{equation*}
$$

Formulation

Given a set of example $S=\left\{x_{1}, \ldots, x_{m}\right\}$

- Centering the data by removing the mean $\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$

$$
\begin{equation*}
x_{i} \leftarrow x_{i}-\bar{x} \quad \forall i \in[m] \tag{2}
\end{equation*}
$$

- Assume the direction that we would like to project the data is u, then the objective function is the data variance

$$
\begin{equation*}
J(\boldsymbol{u})=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{i}\right)^{2} \tag{3}
\end{equation*}
$$

Formulation

Given a set of example $S=\left\{x_{1}, \ldots, x_{m}\right\}$

- Centering the data by removing the mean $\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$

$$
\begin{equation*}
x_{i} \leftarrow x_{i}-\bar{x} \quad \forall i \in[m] \tag{2}
\end{equation*}
$$

- Assume the direction that we would like to project the data is u, then the objective function is the data variance

$$
\begin{equation*}
J(\boldsymbol{u})=\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{i}\right)^{2} \tag{3}
\end{equation*}
$$

- Maximize $J(u)$ is trivial, if there is no constriant on u. Therefore, we set $\|u\|_{2}^{2}=u^{\top} \boldsymbol{u}=1$

Covariance Matrix

The definition of $J(u)$ can be written as

$$
\begin{align*}
J(u) & =\frac{1}{m} \sum_{i=1}^{m}\left(\boldsymbol{u}^{\top} x_{i}\right)^{2} \tag{4}\\
& =\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{u}^{\top} x_{i} \boldsymbol{u}^{\top} x_{i} \tag{5}\\
& =\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{u}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{u} \tag{6}\\
& =\boldsymbol{u}^{\top}\left(\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}\right) \boldsymbol{u} \tag{7}\\
& =\boldsymbol{u}^{\top} \boldsymbol{\Sigma} \boldsymbol{u} \tag{8}
\end{align*}
$$

where $\boldsymbol{\Sigma}$ is the data covariance matrix

Optimization

- The optimization of finding a single direction projection is

$$
\begin{align*}
\max _{u} J(u) & =u^{\top} \boldsymbol{\Sigma} u \tag{9}\\
\text { s.t. } & u^{\top} u=1 \tag{10}
\end{align*}
$$

Optimization

- The optimization of finding a single direction projection is

$$
\begin{align*}
\max _{u} J(u)= & u^{\top} \Sigma u \tag{9}\\
\text { s.t. } & u^{\top} u=1 \tag{10}
\end{align*}
$$

- It can be converted to an unconstrained optimization problem with a Lagrange multiplier

$$
\begin{equation*}
\max _{u}\left\{\boldsymbol{u}^{\top} \boldsymbol{\Sigma} \boldsymbol{u}+\lambda\left(1-\boldsymbol{u}^{\top} \boldsymbol{u}\right)\right\} \tag{11}
\end{equation*}
$$

Optimization

- The optimization of finding a single direction projection is

$$
\begin{align*}
\max _{u} J(u)= & u^{\top} \Sigma u \tag{9}\\
\text { s.t. } & u^{\top} u=1 \tag{10}
\end{align*}
$$

- It can be converted to an unconstrained optimization problem with a Lagrange multiplier

$$
\begin{equation*}
\max _{u}\left\{u^{\top} \boldsymbol{\Sigma} u+\lambda\left(1-u^{\top} \boldsymbol{u}\right)\right\} \tag{11}
\end{equation*}
$$

- The optimal solution is given by

$$
\begin{align*}
& \Sigma u-\lambda u=0 \tag{12}\\
& \Sigma u=\lambda u \tag{13}
\end{align*}
$$

Two Observations

There are two observations from

$$
\begin{equation*}
\Sigma u=\lambda u \tag{14}
\end{equation*}
$$

- First, λ is an eigenvalue of $\boldsymbol{\Sigma}$ and \boldsymbol{u} is the corresponding eigenvector

Two Observations

There are two observations from

$$
\begin{equation*}
\boldsymbol{\Sigma} u=\lambda u \tag{14}
\end{equation*}
$$

- First, λ is an eigenvalue of $\boldsymbol{\Sigma}$ and u is the corresponding eigenvector
- Second, multiplying u^{\top} on both sides, we have

$$
\begin{equation*}
u^{\top} \boldsymbol{\Sigma} \boldsymbol{u}=\lambda \tag{15}
\end{equation*}
$$

In order to maximize $J(u), \lambda$ has to the largest eigenvalue u is the corresponding eigen vector.

Principal Component Analysis

- As u indicates the first major direction that can preserve the data variance, it is called the first principal component

Principal Component Analysis

- As u indicates the first major direction that can preserve the data variance, it is called the first principal component
- In general, with eigen decomposition, we have

$$
\begin{equation*}
U^{\top} \Sigma U=\Lambda \tag{16}
\end{equation*}
$$

- Eigenvalues $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$
- Eigenvectors $\boldsymbol{U}=\left[u_{1}, \ldots, u_{d}\right]$

Principal Component Analysis (II)

Assume in $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$,

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \tag{17}
\end{equation*}
$$

Principal Component Analysis (II)

Assume in $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$,

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \tag{17}
\end{equation*}
$$

To reduce the dimensionality of x from d to n, with $n<d$

- Take the first n eigenvectors in U and form

$$
\begin{equation*}
\tilde{u}=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{d \times n} \tag{18}
\end{equation*}
$$

Principal Component Analysis (II)

Assume in $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$,

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \tag{17}
\end{equation*}
$$

To reduce the dimensionality of x from d to n, with $n<d$

- Take the first n eigenvectors in U and form

$$
\begin{equation*}
\tilde{u}=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{d \times n} \tag{18}
\end{equation*}
$$

- Reduce the dimensionality of x as

$$
\begin{equation*}
\tilde{x}=\tilde{U}^{\top} x \in \mathbb{R}^{n} \tag{19}
\end{equation*}
$$

Principal Component Analysis (II)

Assume in $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$,

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \tag{17}
\end{equation*}
$$

To reduce the dimensionality of x from d to n, with $n<d$

- Take the first n eigenvectors in U and form

$$
\begin{equation*}
\tilde{u}=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{d \times n} \tag{18}
\end{equation*}
$$

- Reduce the dimensionality of x as

$$
\begin{equation*}
\tilde{x}=\tilde{U}^{\top} x \in \mathbb{R}^{n} \tag{19}
\end{equation*}
$$

- The value of n can be determined by the following

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}} \approx 0.95 \tag{20}
\end{equation*}
$$

Applications: Image Processing

Reduce the dimensionality of an image dataset from $28 \times 28=784$ to M

[Bishop, 2006, Section 12.1]

Applications: Image Processing

Reduce the dimensionality of an image dataset from $28 \times 28=784$ to M

(a) Original data

(b) With the first M principal components
[Bishop, 2006, Section 12.1]

A Different Viewpoint of PCA

Data Reconstruction

Another way to formulate the objective function of PCA

$$
\begin{equation*}
\min _{W, U} \sum_{i=1}^{m}\left\|x_{i}-\boldsymbol{U} W x_{i}\right\|_{2}^{2} \tag{21}
\end{equation*}
$$

where

- $W \in \mathbb{R}^{n \times d}$: mapping x_{i} from the original space to a lower-dimensional space \mathbb{R}^{n}
- $U \in \mathbb{R}^{d \times n}$: mapping back the original space \mathbb{R}^{d}
[Shalev-Shwartz and Ben-David, 2014, Chap 23]

Data Reconstruction

Another way to formulate the objective function of PCA

$$
\begin{equation*}
\min _{W, U} \sum_{i=1}^{m}\left\|x_{i}-\boldsymbol{U} W x_{i}\right\|_{2}^{2} \tag{21}
\end{equation*}
$$

where

- $W \in \mathbb{R}^{n \times d}$: mapping x_{i} from the original space to a lower-dimensional space \mathbb{R}^{n}
- $U \in \mathbb{R}^{d \times n}$: mapping back the original space \mathbb{R}^{d}
- Dimensionality reduction is performed as $\tilde{x}=\boldsymbol{U} \boldsymbol{x}$, while W make sure the reduction does not loss much information
[Shalev-Shwartz and Ben-David, 2014, Chap 23]

Optimization

Consider the optimization problem

$$
\begin{equation*}
\min _{W, V} \sum_{i=1}^{m}\left\|x_{i}-\boldsymbol{U W} \boldsymbol{x}_{i}\right\|_{2}^{2} \tag{22}
\end{equation*}
$$

- Let W, U be a solution of equation 24 [Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
- the columns of U are orthonormal
- $W=U^{\top}$

Optimization

Consider the optimization problem

$$
\begin{equation*}
\min _{W, V} \sum_{i=1}^{m}\left\|x_{i}-\boldsymbol{U W} \boldsymbol{X} \boldsymbol{x}_{i}\right\|_{2}^{2} \tag{22}
\end{equation*}
$$

- Let W, U be a solution of equation 24 [Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
- the columns of U are orthonormal
- $W=U^{\top}$
- The optimization problem can be simplified as

$$
\begin{equation*}
\min _{U^{\top} U=I} \sum_{i=1}^{m}\left\|x_{i}-\boldsymbol{U} \boldsymbol{U}^{\top} x_{i}\right\|_{2}^{2} \tag{23}
\end{equation*}
$$

The solution will be the same.

Nonlinear Extension

If we extend the both mappings to be nonlinear, then the model becomes a simple encoder-decoder neural network model

$$
\begin{equation*}
\min _{\boldsymbol{W}, \boldsymbol{V}} \sum_{i=1}^{m}\left\|\boldsymbol{x}_{i}-\tanh \left(\boldsymbol{U} \cdot \tanh \left(\boldsymbol{W} \boldsymbol{x}_{i}\right)\right)\right\|_{2}^{2} \tag{24}
\end{equation*}
$$

where

- $\tilde{x}=\tanh \left(W x_{i}\right)$ is a simple encoder
- $x=\tanh (\boldsymbol{U} \tilde{x})$ is a simple decoder
- No closed-form solutions of $\boldsymbol{W}, \boldsymbol{U}$, although the backpropagation algorithm still applies here

Reference

Bishop, C. M. (2006).
Pattern recognition and machine learning.
Springer.
Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding machine learning: From theory to algorithms.
Cambridge university press.

