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Reducing Dimensions




Curse of Dimensionality
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Curse of Dimensionality

What is the volume difference between two d-dimensional balls with
radii ;1 =1 and r, = 0.99

> d=2: %n(r% - r%) ~ 0.03
/\ > d=3:3n(r}-r))~0.12
> General form: r("%d fl)(rf — rg) with
\J ré’l — Owhend — o
> E.g., 5" =0.00657

Question: what will happen if we uniformly sample from a

d-dimensional ball?



Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a d-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like



Curse of Dimensionality (lI)

If we randomly sample 1K unit vectors from a d-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like
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Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a d-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like
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Dimensionality Reduction

Dimensionality Reduction is the process of taking data in a high
dimensional space and mapping it into a new space whose
dimensionality is much smaller.



Dimensionality Reduction

Dimensionality Reduction is the process of taking data in a high
dimensional space and mapping it into a new space whose
dimensionality is much smaller.

Mathematically, it means
fix— X (1)

where x € RY, # e R" withn < d



Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project x = (x1, x2)
into the direction along x1 or x;
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Question: Given these two data examples, which direction we should
pick? x1 or x?
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Reducing Dimensions: A toy example (Il)

There is a better solution if we are allowed to rotate the coordinate

X2

X1

Pick u1, then we preserve all the variance of the examples



Reducing Dimensions: A toy example (lll)

Consider a general case, where the examples do not lie on a perfect
line

[Bishop, 2006, Section 12.1]



Reducing Dimensions: A toy example (lll)

Consider a general case, where the examples do not lie on a perfect
line

We can follow the same idea by finding a direction that can preserve
most of the variance of the examples

[Bishop, 2006, Section 12.1]
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Formulation

Given a set of example S = {xy,..., Xy}

> Centering the data by removing the mean ¥ = 1 3 x;

xi—x;—x Vie][m] (2)
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Formulation

Given a set of example S = {xy,..., Xy}

> Centering the data by removing the mean ¥ = % X
xi—x;—x Vie][m] (2)

> Assume the direction that we would like to project the data is u,
then the objective function is the data variance

)= - (T G
i=1

> Maximize [(u) is trivial, if there is no constriant on u. Therefore,
we set ||u||§ =u'u=1
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Covariance Matrix

The definition of J(#) can be written as

J(u) (ux;)? (4)

>

i=1

m

Z u'xiux; (5)
i=1

m

Z u'x;xlu (6)
=1

1 m

p” Z xixl.T)u (7)
= u'Xu (8)

where X is the data covariance matrix
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Optimization

> The optimization of finding a single direction projection is
maxJ(u) = u'Xu (9)
u

s.t. wu=1 (10)
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Optimization

> The optimization of finding a single direction projection is
maxJ(u) = u'Xu (9)
u
s.t. wu=1 (10)

> It can be converted to an unconstrained optimization problem
with a Lagrange multiplier

max {uTEu +A(1 - uTu)} (11)
u
» The optimal solution is given by

Yu—Au=0 (12)
Xu = Au (13)
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Two Observations

There are two observations from

Yu = Au (14)

> First, A is an eigenvalue of X and u is the corresponding
eigenvector
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Two Observations

There are two observations from

Yu = Au (14)

> First, A is an eigenvalue of X and u is the corresponding
eigenvector

> Second, multiplying u" on both sides, we have
u'lu=A7 (15)

In order to maximize J(u), A has to the largest eigenvalue u is the
corresponding eigen vector.
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Principal Component Analysis

> As u indicates the first major direction that can preserve the data
variance, it is called the first principal component
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Principal Component Analysis

> As u indicates the first major direction that can preserve the data
variance, it is called the first principal component

> In general, with eigen decomposition, we have

U'tu=A (16)

> Eigenvalues A = diag(Aq,...,Ay)
> Eigenvectors U = [uy, ..., u,]
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Principal Component Analysis (1)

Assume in A = diag(Aq, ..., Aq),

AM=2Ay > 2 Ay (17)
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Principal Component Analysis (1)

Assume in A = diag(Aq, ..., Aq),
MzAyz--2 Mg (17)
To reduce the dimensionality of x from d to n, with n < d
> Take the first n eigenvectors in U and form
U=u,... u] € R>" (18)
> Reduce the dimensionality of x as
¥=U"xeR" (19)
> The value of n can be determined by the following
d

i=1"/M

~ 0.95 (20)
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Applications: Image Processing

Reduce the dimensionality of an image dataset from 28 x 28 = 784 to

> > 3

(a) Original data

[Bishop, 2006, Section 12.1]
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Applications: Image Processing

Reduce the dimensionality of an image dataset from 28 x 28 = 784 to

> > 3

(a) Original data

Original M= 1 M =10 M=5 M =250

333 3%

(b) With the first M principal components

[Bishop, 2006, Section 12.1]
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A Different Viewpoint of PCA




Data Reconstruction

Another way to formulate the objective function of PCA
m
- 2
‘Jv‘}{}zl lx; = UWax; 3 (21)
i=

where

> W e R™?: mapping x; from the original space to a
lower-dimensional space R”"

> U € R™": mapping back the original space R?

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Data Reconstruction

Another way to formulate the objective function of PCA
m
- 2
‘Jv‘}{}zl lx; = UWax; 3 (21)
i=

where

> W e R™?: mapping x; from the original space to a
lower-dimensional space R”
> U € R™": mapping back the original space R?

> Dimensionality reduction is performed as ¥ = Ux, while W
make sure the reduction does not loss much information

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Optimization

Consider the optimization problem

m
: 2
%IZ; lx; - UWxi[3 (22)
1=

> Let W, U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]

» the columns of U are orthonormal
» w=u"
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Optimization

Consider the optimization problem

m
: 2
min El [lx; — UWx;l|5 (22)
1=

> Let W, U be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]

» the columns of U are orthonormal
» w=u"

> The optimization problem can be simplified as

m
min " [|x; - UU ;3 (23)
utu=I1 =

The solution will be the same.
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Nonlinear Extension

If we extend the both mappings to be nonlinear, then the model
becomes a simple encoder-decoder neural network model

m
. L . X 2
rvxvlgg;nxl tanh(U - tanh(Wx))|3 (24)

where

> X = tanh(Wy;) is a simple encoder
> x = tanh(UX) is a simple decoder

> No closed-form solutions of W, U, although the
backpropagation algorithm still applies here
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