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Reducing Dimensions



Curse of Dimensionality

What is the volume difference between two 3-dimensional balls with
radii A1 = 1 and A2 = 0.99

I 3 = 2: 1
2�(A2

1 − A2
2) ≈ 0.03

I 3 = 3: 4
3�(A3

1 − A
3
2) ≈ 0.12

I General form: �3/2

Γ( 32+1) (A
3
1 − A

3
2 )with

A32 → 0 when 3→∞
I E.g., A500

2 = 0.00657

Question: what will happen if we uniformly sample from a
3-dimensional ball?
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Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a 3-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like
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Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a 3-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like

Figure: 3 = 500
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Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a 3-dimensional space
and calculate the the Euclidean distance between any two vectors,
then the distance distribution looks like

Figure: 3 = 1000
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Dimensionality Reduction

Dimensionality Reduction is the process of taking data in a high
dimensional space and mapping it into a new space whose

dimensionality is much smaller.

Mathematically, it means
5 : x → x̃ (1)

where x ∈ ℝ3, x̃ ∈ ℝ= with = < 3
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Reducing Dimensions: A toy example

For the purpose of reducing dimensions, we can project x = (G1 , G2)
into the direction along G1 or G2

G1

G2

Question: Given these two data examples, which direction we should
pick? G1 or G2?
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Reducing Dimensions: A toy example (II)

There is a better solution if we are allowed to rotate the coordinate

G1

G2

D1

D2

Pick D1, then we preserve all the variance of the examples
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Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect
line

We can follow the same idea by finding a direction that can preserve
most of the variance of the examples

[Bishop, 2006, Section 12.1]
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Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect
line

We can follow the same idea by finding a direction that can preserve
most of the variance of the examples

[Bishop, 2006, Section 12.1]
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Principal Component Analysis



Formulation

Given a set of example ( = {x1 , . . . , x<}

I Centering the data by removing the mean x̄ = 1
<

∑<
8=1 x8

x8 ← x8 − x̄ ∀8 ∈ [<] (2)

I Assume the direction that we would like to project the data is u,
then the objective function is the data variance

�(u) = 1
<

<∑
8=1
(uTx8)2 (3)

I Maximize �(u) is trivial, if there is no constriant on u. Therefore,
we set ‖u‖22 = uTu = 1
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Covariance Matrix

The definition of �(u) can be written as

�(u) =
1
<

<∑
8=1
(uTx8)2 (4)

=
1
<

<∑
8=1

uTx8uTx8 (5)

=
1
<

<∑
8=1

uTx8xT8 u (6)

= uT
( 1
<

<∑
8=1

x8xT8

)
u (7)

= uT�u (8)

where � is the data covariance matrix
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Optimization

I The optimization of finding a single direction projection is

max
u

�(u) = uT�u (9)

s.t. uTu = 1 (10)

I It can be converted to an unconstrained optimization problem
with a Lagrange multiplier

max
u

{
uT�u + �(1 − uTu)

}
(11)

I The optimal solution is given by

�u − �u = 0 (12)
�u = �u (13)
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Two Observations

There are two observations from

�u = �u (14)

I First, � is an eigenvalue of � and u is the corresponding
eigenvector

I Second, multiplying uT on both sides, we have

uT�u = � (15)

In order to maximize �(u), � has to the largest eigenvalue u is the
corresponding eigen vector.
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Principal Component Analysis

I As u indicates the first major direction that can preserve the data
variance, it is called the first principal component

I In general, with eigen decomposition, we have

[T�[ = � (16)

I Eigenvalues � = diag(�1 , . . . ,�3)
I Eigenvectors[ = [u1 , . . . , u3]
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Principal Component Analysis (II)

Assume in � = diag(�1 , . . . ,�3),

�1 ≥ �2 ≥ · · · ≥ �3 (17)

To reduce the dimensionality of x from 3 to =, with = < 3

I Take the first = eigenvectors in[ and form

[̃ = [u1 , . . . , u=] ∈ ℝ3×= (18)

I Reduce the dimensionality of x as

x̃ = [̃Tx ∈ ℝ= (19)

I The value of = can be determined by the following∑=
8=1 �8∑3
8=1 �8

≈ 0.95 (20)
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Applications: Image Processing

Reduce the dimensionality of an image dataset from 28 × 28 = 784 to
"

(a) Original data

(b) With the first " principal components

[Bishop, 2006, Section 12.1]
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A Different Viewpoint of PCA



Data Reconstruction

Another way to formulate the objective function of PCA

min
] ,[

<∑
8=1
‖x8 −[]x8 ‖22 (21)

where

I ] ∈ ℝ=×3: mapping x8 from the original space to a
lower-dimensional space ℝ=

I [ ∈ ℝ3×= : mapping back the original space ℝ3

I Dimensionality reduction is performed as x̃ = [x, while]
make sure the reduction does not loss much information

[Shalev-Shwartz and Ben-David, 2014, Chap 23]
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Optimization

Consider the optimization problem

min
] ,\

<∑
8=1
‖x8 −[]x8 ‖22 (22)

I Let] ,[ be a solution of equation 24
[Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
I the columns of[ are orthonormal
I ] = [T

I The optimization problem can be simplified as

min
[T[=O

<∑
8=1
‖x8 −[[Tx8 ‖22 (23)

The solution will be the same.
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Nonlinear Extension

If we extend the both mappings to be nonlinear, then the model
becomes a simple encoder-decoder neural network model

min
] ,\

<∑
8=1
‖x8 − tanh([ · tanh(]x8))‖22 (24)

where

I x̃ = tanh(]x8) is a simple encoder
I x = tanh([x̃) is a simple decoder
I No closed-form solutions of] ,[ , although the

backpropagation algorithm still applies here
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