CS 6316 Machine Learning

Dimensionality Reduction

Yangfeng Ji

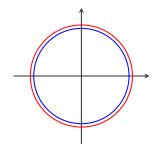
Information and Language Processing Lab Department of Computer Science University of Virginia

- 1. Reducing Dimensions
- 2. Principal Component Analysis
- 3. A Different Viewpoint of PCA

Reducing Dimensions

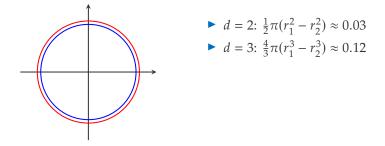
Curse of Dimensionality

What is the volume difference between two *d*-dimensional balls with radii $r_1 = 1$ and $r_2 = 0.99$

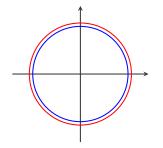


Curse of Dimensionality

What is the volume difference between two *d*-dimensional balls with radii $r_1 = 1$ and $r_2 = 0.99$

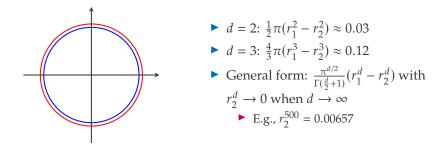


What is the volume difference between two *d*-dimensional balls with radii $r_1 = 1$ and $r_2 = 0.99$



d = 2: ½π(r₁² - r₂²) ≈ 0.03
 d = 3: ¼π(r₁³ - r₂³) ≈ 0.12
 General form: π^{d/2}/(Γ(^d/₂+1)) (r^d₁ - r^d₂) with r^d₂ → 0 when d → ∞
 E.g., r⁵⁰⁰₂ = 0.00657

What is the volume difference between two *d*-dimensional balls with radii $r_1 = 1$ and $r_2 = 0.99$



Question: what will happen if we uniformly sample from a *d*-dimensional ball?

If we randomly sample 1K unit vectors from a *d*-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a *d*-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

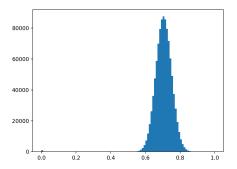


Figure: d = 100

If we randomly sample 1K unit vectors from a *d*-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

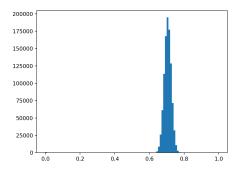


Figure: d = 500

Curse of Dimensionality (II)

If we randomly sample 1K unit vectors from a *d*-dimensional space and calculate the the Euclidean distance between any two vectors, then the distance distribution looks like

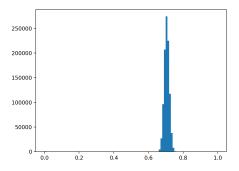


Figure: d = 1000

Dimensionality Reduction is the process of taking data in a high dimensional space and mapping it into a new space whose dimensionality is much smaller.

Dimensionality Reduction is the process of taking data in a high dimensional space and mapping it into a new space whose dimensionality is much smaller.

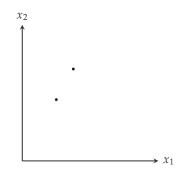
Mathematically, it means

$$f: x \to \tilde{x}$$
 (1)

where $x \in \mathbb{R}^d$, $\tilde{x} \in \mathbb{R}^n$ with n < d

Reducing Dimensions: A toy example

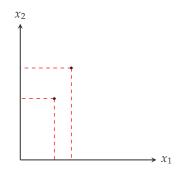
For the purpose of reducing dimensions, we can project $x = (x_1, x_2)$ into the direction along x_1 or x_2



Question: Given these two data examples, which direction we should pick? x_1 or x_2 ?

Reducing Dimensions: A toy example

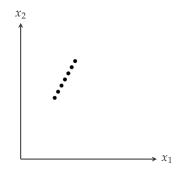
For the purpose of reducing dimensions, we can project $x = (x_1, x_2)$ into the direction along x_1 or x_2



Question: Given these two data examples, which direction we should pick? x_1 or x_2 ?

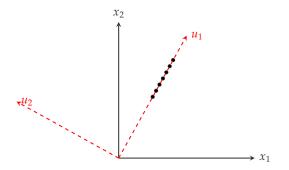
Reducing Dimensions: A toy example (II)

There is a better solution if we are allowed to rotate the coordinate



Reducing Dimensions: A toy example (II)

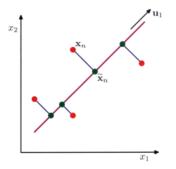
There is a better solution if we are allowed to rotate the coordinate



Pick u_1 , then we preserve all the variance of the examples

Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect line



[Bishop, 2006, Section 12.1]

Reducing Dimensions: A toy example (III)

Consider a general case, where the examples do not lie on a perfect line



We can follow the same idea by finding a direction that can preserve **most** of the variance of the examples

[Bishop, 2006, Section 12.1]

Formulation

Given a set of example $S = \{x_1, \ldots, x_m\}$

• Centering the data by removing the mean $\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$

$$x_i \leftarrow x_i - \bar{x} \quad \forall i \in [m] \tag{2}$$

Formulation

Given a set of example $S = \{x_1, \ldots, x_m\}$

• Centering the data by removing the mean $\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$

$$x_i \leftarrow x_i - \bar{x} \quad \forall i \in [m] \tag{2}$$

Assume the direction that we would like to project the data is *u*, then the objective function is the data variance

$$J(u) = \frac{1}{m} \sum_{i=1}^{m} (u^{\mathsf{T}} x_i)^2$$
(3)

Formulation

Given a set of example $S = \{x_1, \ldots, x_m\}$

• Centering the data by removing the mean $\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$

$$x_i \leftarrow x_i - \bar{x} \quad \forall i \in [m] \tag{2}$$

Assume the direction that we would like to project the data is *u*, then the objective function is the data variance

$$J(u) = \frac{1}{m} \sum_{i=1}^{m} (u^{\mathsf{T}} x_i)^2$$
(3)

• Maximize J(u) is trivial, if there is no constriant on u. Therefore, we set $||u||_2^2 = u^T u = 1$

Covariance Matrix

The definition of J(u) can be written as

$$J(u) = \frac{1}{m} \sum_{i=1}^{m} (u^{\mathsf{T}} x_i)^2 \qquad (4)$$
$$= \frac{1}{m} \sum_{i=1}^{m} u^{\mathsf{T}} x_i u^{\mathsf{T}} x_i \qquad (5)$$
$$= \frac{1}{m} \sum_{i=1}^{m} u^{\mathsf{T}} x_i x_i^{\mathsf{T}} u \qquad (6)$$
$$= u^{\mathsf{T}} \left(\frac{1}{m} \sum_{i=1}^{m} x_i x_i^{\mathsf{T}}\right) u \qquad (7)$$
$$= u^{\mathsf{T}} \Sigma u \qquad (8)$$

where Σ is the data covariance matrix

Optimization

The optimization of finding a single direction projection is

$$\max_{u} J(u) = u^{\mathsf{T}} \Sigma u \tag{9}$$

s.t.
$$\boldsymbol{u}^{\mathsf{T}}\boldsymbol{u} = 1$$
 (10)

Optimization

The optimization of finding a single direction projection is

$$\max_{u} J(u) = u^{\mathsf{T}} \Sigma u \tag{9}$$

s.t.
$$u^{\mathsf{T}}u = 1$$
 (10)

 It can be converted to an unconstrained optimization problem with a Lagrange multiplier

$$\max_{u} \left\{ u^{\mathsf{T}} \Sigma u + \lambda (1 - u^{\mathsf{T}} u) \right\}$$
(11)

Optimization

The optimization of finding a single direction projection is

$$\max_{u} J(u) = u^{\mathsf{T}} \Sigma u \tag{9}$$

s.t.
$$u^{\mathsf{T}}u = 1$$
 (10)

 It can be converted to an unconstrained optimization problem with a Lagrange multiplier

$$\max_{u} \left\{ u^{\mathsf{T}} \Sigma u + \lambda (1 - u^{\mathsf{T}} u) \right\}$$
(11)

The optimal solution is given by

$$\Sigma u - \lambda u = 0 \tag{12}$$

$$\Sigma u = \lambda u \tag{13}$$

There are two observations from

$$\Sigma u = \lambda u \tag{14}$$

First, λ is an eigenvalue of Σ and u is the corresponding eigenvector

There are two observations from

$$\Sigma u = \lambda u \tag{14}$$

- First, λ is an eigenvalue of Σ and u is the corresponding eigenvector
- Second, multiplying u^{T} on both sides, we have

$$\boldsymbol{u}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{u} = \boldsymbol{\lambda} \tag{15}$$

In order to maximize J(u), λ has to the largest eigenvalue u is the corresponding eigen vector.

As *u* indicates the first major direction that can preserve the data variance, it is called the first principal component

- As *u* indicates the first major direction that can preserve the data variance, it is called the first principal component
- In general, with eigen decomposition, we have

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{U} = \boldsymbol{\Lambda} \tag{16}$$

Eigenvalues
$$\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$$

• Eigenvectors $\boldsymbol{U} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_d]$

Assume in $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d)$,

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \tag{17}$$

Assume in Λ = diag($\lambda_1, \ldots, \lambda_d$),

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \tag{17}$$

To reduce the dimensionality of *x* from *d* to *n*, with n < d

▶ Take the first *n* eigenvectors in *U* and form

$$\tilde{\boldsymbol{U}} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n] \in \mathbb{R}^{d \times n}$$
(18)

Assume in $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d)$,

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \tag{17}$$

To reduce the dimensionality of *x* from *d* to *n*, with n < d

▶ Take the first *n* eigenvectors in *U* and form

$$\tilde{\boldsymbol{U}} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n] \in \mathbb{R}^{d \times n}$$
(18)

Reduce the dimensionality of x as

$$\tilde{x} = \tilde{U}^{\mathsf{T}} x \in \mathbb{R}^n \tag{19}$$

Assume in $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d)$,

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \tag{17}$$

To reduce the dimensionality of *x* from *d* to *n*, with n < d

Take the first *n* eigenvectors in *U* and form

$$\tilde{\boldsymbol{U}} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n] \in \mathbb{R}^{d \times n}$$
(18)

Reduce the dimensionality of x as

$$\tilde{x} = \tilde{U}^{\mathsf{T}} x \in \mathbb{R}^n \tag{19}$$

The value of n can be determined by the following

$$\frac{\sum_{i=1}^{n} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \approx 0.95$$
(20)

Applications: Image Processing

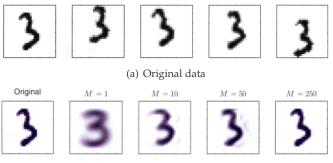
Reduce the dimensionality of an image dataset from $28 \times 28 = 784$ to M

(a) Original data

[Bishop, 2006, Section 12.1]

Applications: Image Processing

Reduce the dimensionality of an image dataset from $28 \times 28 = 784$ to M



(b) With the first M principal components

[Bishop, 2006, Section 12.1]

A Different Viewpoint of PCA

Data Reconstruction

Another way to formulate the objective function of PCA

$$\min_{W,U} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2$$
(21)

where

- W ∈ ℝ^{n×d}: mapping x_i from the original space to a lower-dimensional space ℝⁿ
- $\boldsymbol{U} \in \mathbb{R}^{d \times n}$: mapping back the original space \mathbb{R}^d

[Shalev-Shwartz and Ben-David, 2014, Chap 23]

Data Reconstruction

Another way to formulate the objective function of PCA

$$\min_{W,U} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2$$
(21)

where

- W ∈ ℝ^{n×d}: mapping x_i from the original space to a lower-dimensional space ℝⁿ
- $\boldsymbol{U} \in \mathbb{R}^{d \times n}$: mapping back the original space \mathbb{R}^d
- Dimensionality reduction is performed as x̃ = Ux, while W make sure the reduction does not loss much information

[Shalev-Shwartz and Ben-David, 2014, Chap 23]

Consider the optimization problem

$$\min_{W,V} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2$$
(22)

- Let W, U be a solution of equation 24
 [Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
 - ▶ the columns of *U* are orthonormal

$$\blacktriangleright$$
 $W = U^{\top}$

Consider the optimization problem

$$\min_{W,V} \sum_{i=1}^{m} \|x_i - UWx_i\|_2^2$$
(22)

- Let W, U be a solution of equation 24
 [Shalev-Shwartz and Ben-David, 2014, Lemma 23.1]
 - the columns of *U* are orthonormal
 - \blacktriangleright $W = U^{\top}$

The optimization problem can be simplified as

$$\min_{\boldsymbol{U}^{\mathsf{T}}\boldsymbol{U}=\boldsymbol{I}} \sum_{i=1}^{m} \|\boldsymbol{x}_{i} - \boldsymbol{U}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{x}_{i}\|_{2}^{2}$$
(23)

The solution will be the same.

If we extend the both mappings to be nonlinear, then the model becomes a simple encoder-decoder neural network model

$$\min_{W,V} \sum_{i=1}^{m} \|\boldsymbol{x}_i - \tanh(\boldsymbol{U} \cdot \tanh(\boldsymbol{W}\boldsymbol{x}_i))\|_2^2$$
(24)

where

- $\tilde{x} = \tanh(Wx_i)$ is a simple encoder
- $x = \tanh(U\tilde{x})$ is a simple decoder
- No closed-form solutions of *W*, *U*, although the backpropagation algorithm still applies here

Reference

Bishop, C. M. (2006).

Pattern recognition and machine learning. Springer.

Shalev-Shwartz, S. and Ben-David, S. (2014).

Understanding machine learning: From theory to algorithms. Cambridge university press.