CS 6316 Machine Learning

Clustering

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

Clustering

Clustering

Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups
[Shalev-Shwartz and Ben-David, 2014, Page 307]

Motivation

A good clustering can help us understand the data

[MacKay, 2003, Chap 20]

Movitation(II)

A good clustering has predictive power and can be useful to build better classifiers

[MacKay, 2003, Chap 20]

Motivation (III)

Failures of a cluster model may highlight interesting properties of data or a single data point

[MacKay, 2003, Chap 20]

Challenges

- Lack of ground truth - like any other unsupervised learning tasks

[Shalev-Shwartz and Ben-David, 2014, Page 307]

Challenges

- Lack of ground truth — like any other unsupervised learning tasks
- Definition of similarity measurement
- Two images are similar
- Two documents are similar

[Shalev-Shwartz and Ben-David, 2014, Page 307]

K-Means Clustering

K-Means Clustering

- A data set $S=\left\{x_{1}, \ldots, x_{m}\right\}$ with $x_{i} \in \mathbb{R}^{d}$
- Partition the data set into some number K of clusters
- K is a hyper-parameter given before learning
- Another example task of unsupervised learning

Objective Function

- Introduce $r_{i} \in[K]$ for each data point \boldsymbol{x}_{i}, which is a determinstric variable
- The objective function of k-means clustering

$$
\begin{equation*}
J(r, \mu)=\sum_{i=1}^{m} \sum_{k=1}^{K} \delta\left(r_{i}=k\right)\left\|x_{i}-\mu_{k}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

where $\left\{\mu_{k}\right\}_{k=1}^{K} \in \mathbb{R}^{d}$. Each μ_{k} is called a prototype associated with the k-th cluster.

Objective Function

- Introduce $r_{i} \in[K]$ for each data point \boldsymbol{x}_{i}, which is a determinstric variable
- The objective function of k-means clustering

$$
\begin{equation*}
J(r, \mu)=\sum_{i=1}^{m} \sum_{k=1}^{K} \delta\left(r_{i}=k\right)\left\|x_{i}-\mu_{k}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

where $\left\{\mu_{k}\right\}_{k=1}^{K} \in \mathbb{R}^{d}$. Each μ_{k} is called a prototype associated with the k-th cluster.

- Learning: minimize equation 1

$$
\begin{equation*}
\underset{r, \mu}{\operatorname{argmin}} J(r, \mu) \tag{2}
\end{equation*}
$$

Learning: Initialization

Randomly initialize $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$

Learning: Assignment Step

Given $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$, for each \boldsymbol{x}_{i}, find the value of r_{i} is equivalent to assign the data point to a cluster

$$
\begin{equation*}
r_{i} \leftarrow \underset{k^{\prime}}{\operatorname{argmin}}\left\|x_{i}-\mu_{k^{\prime}}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

Learning: Update Step

Given $\left\{r_{i}\right\}_{i=1}^{m}$, the algorithm updates μ_{k} as

$$
\begin{equation*}
\mu_{k}=\frac{\sum_{i=1}^{m} \delta\left(r_{i}=k\right) x_{i}}{\sum_{i=1}^{m} \delta\left(r_{i}=k\right)} \tag{4}
\end{equation*}
$$

- The updated μ_{k} equals to the mean of all data points in cluster k

Algorithm

With some randomly initialized $\left\{\mu_{k}\right\}_{k=1}^{K}$, iterate the following two steps until converge

Assignment Step Assign r_{i} for each \boldsymbol{x}_{i}

$$
\begin{equation*}
r_{i} \leftarrow \underset{k^{\prime}}{\operatorname{argmin}}\left\|x_{i}-\mu_{k^{\prime}}\right\|_{2}^{2} \tag{5}
\end{equation*}
$$

Update Step Updates μ_{k} with $\left\{r_{i}\right\}_{i=1}^{m}$

$$
\begin{equation*}
\mu_{k}=\frac{\sum_{i=1}^{m} \delta\left(r_{i}=k\right) x_{i}}{\sum_{i=1}^{m} \delta\left(r_{i}=k\right)} \tag{6}
\end{equation*}
$$

Example (Cont.)

From GMMs to K-means

Gaussian Mixture Models

Consider a GMM with two components

$$
\begin{align*}
q(x, z)= & q(z) q(x \mid z) \\
= & \alpha^{\delta(z=1)} \cdot \mathcal{N}\left(x ; \mu_{1}, \Sigma_{1}\right)^{\delta(z=1)} \\
& \cdot(1-\alpha)^{\delta(z=2)} \cdot \mathcal{N}\left(x ; \mu_{2}, \boldsymbol{\Sigma}_{2}\right)^{\delta(z=2)} \tag{7}
\end{align*}
$$

Gaussian Mixture Models

Consider a GMM with two components

$$
\begin{align*}
q(x, z)= & q(z) q(x \mid z) \\
= & \alpha^{\delta(z=1)} \cdot \mathcal{N}\left(x ; \mu_{1}, \boldsymbol{\Sigma}_{1}\right)^{\delta(z=1)} \\
& \cdot(1-\alpha)^{\delta(z=2)} \cdot \mathcal{N}\left(x ; \mu_{2}, \boldsymbol{\Sigma}_{2}\right)^{\delta(z=2)} \tag{7}
\end{align*}
$$

And the marginal probability $p(x)$ is

$$
\begin{align*}
q(x) & =q(z=1) q(x \mid z=1)+q(z=2) q(x \mid z=2) \\
& =\alpha \cdot \mathcal{N}\left(x ; \mu_{1}, \Sigma_{1}\right)+(1-\alpha) \cdot \mathcal{N}\left(x ; \mu_{2}, \Sigma_{2}\right) \tag{8}
\end{align*}
$$

A Special Case

Consider the first component in this GMM with parameters μ_{1} and Σ_{1}

- Assume $\Sigma_{1}=\epsilon I$, then

$$
\begin{align*}
\left|\Sigma_{1}\right| & =\epsilon^{d} \tag{9}\\
\left(x-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}(x-\mu) & =\frac{1}{\epsilon}\|x-\mu\|_{2}^{2} \tag{10}
\end{align*}
$$

A Special Case

Consider the first component in this GMM with parameters μ_{1} and Σ_{1}

- Assume $\Sigma_{1}=\epsilon \boldsymbol{I}$, then

$$
\begin{align*}
\left|\Sigma_{1}\right| & =\epsilon^{d} \tag{9}\\
\left(x-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}(x-\mu) & =\frac{1}{\epsilon}\|x-\mu\|_{2}^{2} \tag{10}
\end{align*}
$$

- A Gaussian component can be simplified as

$$
\begin{align*}
q\left(x_{i} \mid z_{i}=1\right) & =\frac{1}{(2 \pi)^{\frac{d}{2}}\left|\Sigma_{1}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}\left(x_{i}-\mu_{1}\right)\right) \\
& =\frac{1}{(2 \pi \epsilon)^{\frac{d}{2}}} \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right) \tag{11}
\end{align*}
$$

A Special Case

Consider the first component in this GMM with parameters μ_{1} and Σ_{1}

- Assume $\Sigma_{1}=\epsilon I$, then

$$
\begin{align*}
\left|\Sigma_{1}\right| & =\epsilon^{d} \tag{9}\\
\left(x-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}(x-\mu) & =\frac{1}{\epsilon}\|x-\mu\|_{2}^{2} \tag{10}
\end{align*}
$$

- A Gaussian component can be simplified as

$$
\begin{align*}
q\left(x_{i} \mid z_{i}=1\right) & =\frac{1}{(2 \pi)^{\frac{d}{2}}\left|\Sigma_{1}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu_{1}\right)^{\top} \Sigma_{1}^{-1}\left(x_{i}-\mu_{1}\right)\right) \\
& =\frac{1}{(2 \pi \epsilon)^{\frac{d}{2}}} \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right) \tag{11}
\end{align*}
$$

- Similar results with the second component with $\Sigma_{2}=\epsilon I$

A Special Case (II)

From the previous discussion, we know that, given $\boldsymbol{\theta}, q\left(z_{i} \mid x_{i}\right)$ is computed as

$$
\begin{aligned}
q\left(z_{i}=1 \mid x_{i}\right) & =\frac{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)}{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)+(1-\alpha) \cdot \mathcal{N}\left(x_{i} ; \mu_{2}, \Sigma_{2}\right)} \\
& =\frac{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)}{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)+(1-\alpha) \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{2}\right\|_{2}^{2}\right.}
\end{aligned}
$$

A Special Case (II)

From the previous discussion, we know that, given $\boldsymbol{\theta}, q\left(z_{i} \mid x_{i}\right)$ is computed as

$$
\begin{aligned}
q\left(z_{i}=1 \mid x_{i}\right) & =\frac{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)}{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)+(1-\alpha) \cdot \mathcal{N}\left(x_{i} ; \mu_{2}, \Sigma_{2}\right)} \\
& =\frac{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)}{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)+(1-\alpha) \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{2}\right\|_{2}^{2}\right.}
\end{aligned}
$$

- When $\epsilon \rightarrow 0$

$$
q\left(z_{i}=1 \mid x_{i}\right) \rightarrow \begin{cases}1 & \left\|x_{i}-\mu_{1}\right\|_{2}<\left\|x_{i}-\mu_{2}\right\|_{2} \tag{12}\\ 0 & \left\|x_{i}-\mu_{1}\right\|_{2}>\left\|x_{i}-\mu_{2}\right\|_{2}\end{cases}
$$

A Special Case (II)

From the previous discussion, we know that, given $\boldsymbol{\theta}, q\left(z_{i} \mid x_{i}\right)$ is computed as

$$
\begin{aligned}
q\left(z_{i}=1 \mid x_{i}\right) & =\frac{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)}{\alpha \cdot \mathcal{N}\left(x_{i} ; \mu_{1}, \Sigma_{1}\right)+(1-\alpha) \cdot \mathcal{N}\left(x_{i} ; \mu_{2}, \Sigma_{2}\right)} \\
& =\frac{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)}{\alpha \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{1}\right\|_{2}^{2}\right)+(1-\alpha) \exp \left(-\frac{1}{2 \epsilon}\left\|x_{i}-\mu_{2}\right\|_{2}^{2}\right.}
\end{aligned}
$$

- When $\epsilon \rightarrow 0$

$$
q\left(z_{i}=1 \mid x_{i}\right) \rightarrow \begin{cases}1 & \left\|x_{i}-\mu_{1}\right\|_{2}<\left\|x_{i}-\mu_{2}\right\|_{2} \tag{12}\\ 0 & \left\|x_{i}-\mu_{1}\right\|_{2}>\left\|x_{i}-\mu_{2}\right\|_{2}\end{cases}
$$

- r_{i} in K-means is a very special case of z_{i} in GMM

When K-means Will Fail?

Recall that K-means is an extreme case of GMM with $\boldsymbol{\Sigma}=\epsilon \boldsymbol{I}$ and $\epsilon \rightarrow 0$

Parameters

$$
\begin{array}{r}
\mu_{1}=[1.5,0]^{\top} \quad \mu_{2}=[-1.5,0]^{\top} \\
\Sigma_{1}=\Sigma_{2}=\operatorname{diag}(0.1,10.0) \tag{13}
\end{array}
$$

When K-means Will Fail? (II)

Recall that K-means is an extreme case of GMM with $\boldsymbol{\Sigma}=\epsilon \boldsymbol{I}$ and $\epsilon \rightarrow 0$

How About GMM?

With the following setup ${ }^{1}$

- Randomly initialize GMM parameters (instead of using K-means to initalize)
- Set covariance_type to be tied

${ }^{1}$ Please refer to the demo code for more detail

Spectral Clustering

Instead of computing the distance between data points to some prototypes, spectral clustering is purely based on the similarity between data points, which can address the problem like this

[Shalev-Shwartz and Ben-David, 2014, Section 22.3]

Reference

Bishop, C. M. and Nasrabadi, N. M. (2006).
Pattern recognition and machine learning, volume 4.
Springer.
MacKay, D. (2003).
Information theory, inference and learning algorithms.
Cambridge university press.
Shalev-Shwartz, S. and Ben-David, S. (2014).
Understanding machine learning: From theory to algorithms.
Cambridge university press.

