# CS 6316 Machine Learning

Yangfeng Ji

Information and Language Processing Lab Department of Computer Science University of Virginia

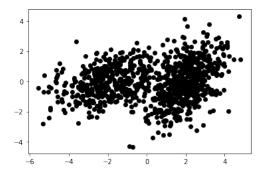


# Clustering

### Clustering is the task of grouping a set of objects such that similar objects end up in the same group and dissimilar objects are separated into different groups

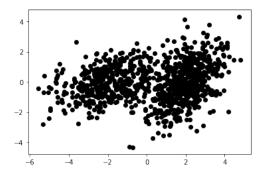
[Shalev-Shwartz and Ben-David, 2014, Page 307]

A good clustering can help us understand the data



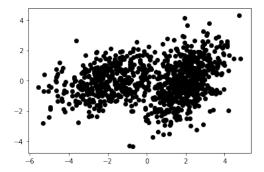
[MacKay, 2003, Chap 20]

A good clustering has predictive power and can be useful to build better classifiers



[MacKay, 2003, Chap 20]

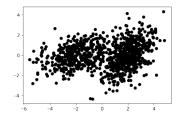
Failures of a cluster model may highlight interesting properties of data or a single data point



[MacKay, 2003, Chap 20]

# Challenges

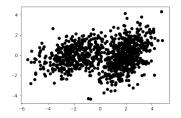
Lack of ground truth — like any other unsupervised learning tasks



[Shalev-Shwartz and Ben-David, 2014, Page 307]

# Challenges

- Lack of ground truth like any other unsupervised learning tasks
- Definition of *similarity* measurement
  - Two images are similar
  - Two documents are similar

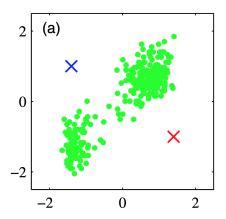


[Shalev-Shwartz and Ben-David, 2014, Page 307]

## *K*-Means Clustering

# K-Means Clustering

- A data set  $S = \{x_1, \ldots, x_m\}$  with  $x_i \in \mathbb{R}^d$
- Partition the data set into some number K of clusters
- ► *K* is a hyper-parameter given before learning
- Another example task of unsupervised learning



# **Objective Function**

- ▶ Introduce  $r_i \in [K]$  for each data point  $x_i$ , which is a deterministric variable
- The objective function of k-means clustering

$$J(\mathbf{r}, \boldsymbol{\mu}) = \sum_{i=1}^{m} \sum_{k=1}^{K} \delta(r_i = k) \| \mathbf{x}_i - \boldsymbol{\mu}_k \|_2^2$$
(1)

where  $\{\mu_k\}_{k=1}^K \in \mathbb{R}^d$ . Each  $\mu_k$  is called a *prototype* associated with the *k*-th cluster.

# **Objective Function**

- ▶ Introduce  $r_i \in [K]$  for each data point  $x_i$ , which is a deterministric variable
- ▶ The objective function of *k*-means clustering

$$J(\mathbf{r}, \boldsymbol{\mu}) = \sum_{i=1}^{m} \sum_{k=1}^{K} \delta(r_i = k) \| \mathbf{x}_i - \boldsymbol{\mu}_k \|_2^2$$
(1)

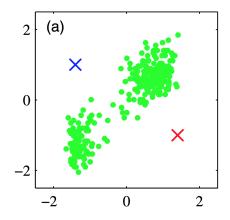
where  $\{\mu_k\}_{k=1}^K \in \mathbb{R}^d$ . Each  $\mu_k$  is called a *prototype* associated with the *k*-th cluster.

Learning: minimize equation 1

$$\underset{r,\mu}{\operatorname{argmin}} J(r,\mu) \tag{2}$$

# Learning: Initialization

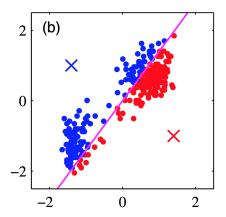
Randomly initialize  $\{\boldsymbol{\mu}_k\}_{k=1}^{K}$ 



# Learning: Assignment Step

Given  $\{\mu_k\}_{k=1}^{K}$ , for each  $x_i$ , find the value of  $r_i$  is equivalent to assign the data point to a cluster

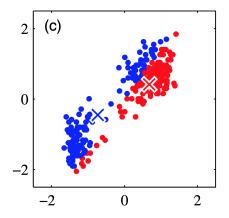
$$r_i \leftarrow \underset{k'}{\operatorname{argmin}} \|x_i - \mu_{k'}\|_2^2 \tag{3}$$



# Learning: Update Step

Given  $\{r_i\}_{i=1}^m$ , the algorithm updates  $\mu_k$  as

$$\mu_k = \frac{\sum_{i=1}^m \delta(r_i = k) \mathbf{x}_i}{\sum_{i=1}^m \delta(r_i = k)}$$
(4)



The updated  $\mu_k$  equals to the mean of all data points in cluster k <sup>12</sup>

With some randomly initialized  $\{\mu_k\}_{k=1}^{K}$  iterate the following two steps until converge

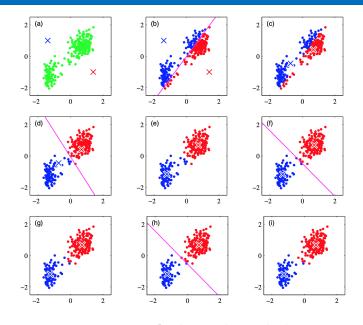
**Assignment Step** Assign  $r_i$  for each  $x_i$ 

$$r_i \leftarrow \underset{k'}{\operatorname{argmin}} \| \boldsymbol{x}_i - \boldsymbol{\mu}_{k'} \|_2^2 \tag{5}$$

**Update Step** Updates  $\mu_k$  with  $\{r_i\}_{i=1}^m$ 

$$\mu_k = \frac{\sum_{i=1}^m \delta(r_i = k) x_i}{\sum_{i=1}^m \delta(r_i = k)}$$
(6)

# Example (Cont.)



[Richan and Macrahadi acof Page 106]

## From GMMs to *K*-means

#### Consider a GMM with two components

$$q(\mathbf{x}, z) = q(z)q(\mathbf{x} \mid z)$$
  
=  $\alpha^{\delta(z=1)} \cdot \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)^{\delta(z=1)}$   
 $\cdot (1 - \alpha)^{\delta(z=2)} \cdot \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)^{\delta(z=2)}$  (7)

#### Consider a GMM with two components

$$q(\mathbf{x}, z) = q(z)q(\mathbf{x} \mid z)$$
  
=  $\alpha^{\delta(z=1)} \cdot \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)^{\delta(z=1)}$   
 $\cdot (1 - \alpha)^{\delta(z=2)} \cdot \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)^{\delta(z=2)}$  (7)

And the marginal probability p(x) is

$$q(x) = q(z = 1)q(x | z = 1) + q(z = 2)q(x | z = 2)$$
  
=  $\alpha \cdot \mathcal{N}(x; \mu_1, \Sigma_1) + (1 - \alpha) \cdot \mathcal{N}(x; \mu_2, \Sigma_2)$  (8)

Consider the first component in this GMM with parameters  $\mu_1$  and  $\Sigma_1$ 

• Assume  $\Sigma_1 = \epsilon I$ , then

$$|\boldsymbol{\Sigma}_1| = \boldsymbol{\epsilon}^d \qquad (9)$$
$$(\boldsymbol{x} - \boldsymbol{\mu}_1)^{\mathsf{T}} \boldsymbol{\Sigma}_1^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = \frac{1}{\boldsymbol{\epsilon}} \|\boldsymbol{x} - \boldsymbol{\mu}\|_2^2 \qquad (10)$$

Consider the first component in this GMM with parameters  $\mu_1$  and  $\Sigma_1$ 

• Assume  $\Sigma_1 = \epsilon I$ , then

$$|\Sigma_1| = \epsilon^d \tag{9}$$

$$(x - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x - \mu) = \frac{1}{\epsilon} ||x - \mu||_2^2$$
(10)

A Gaussian component can be simplified as

$$q(\mathbf{x}_{i} \mid z_{i} = 1) = \frac{1}{(2\pi)^{\frac{d}{2}} |\mathbf{\Sigma}_{1}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{\mathsf{T}} \mathbf{\Sigma}_{1}^{-1}(\mathbf{x}_{i} - \boldsymbol{\mu}_{1})\right)$$
$$= \frac{1}{(2\pi\epsilon)^{\frac{d}{2}}} \exp\left(-\frac{1}{2\epsilon} ||\mathbf{x}_{i} - \boldsymbol{\mu}_{1}||_{2}^{2}\right)$$
(11)

Consider the first component in this GMM with parameters  $\mu_1$  and  $\Sigma_1$ 

• Assume  $\Sigma_1 = \epsilon I$ , then

$$|\boldsymbol{\Sigma}_1| = \boldsymbol{\epsilon}^d \tag{9}$$

$$(x - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (x - \mu) = \frac{1}{\epsilon} ||x - \mu||_2^2$$
(10)

A Gaussian component can be simplified as

$$q(\mathbf{x}_{i} \mid z_{i} = 1) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_{1}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x}_{i} - \boldsymbol{\mu}_{1})^{\mathsf{T}} \Sigma_{1}^{-1}(\mathbf{x}_{i} - \boldsymbol{\mu}_{1})\right)$$
$$= \frac{1}{(2\pi\epsilon)^{\frac{d}{2}}} \exp\left(-\frac{1}{2\epsilon} ||\mathbf{x}_{i} - \boldsymbol{\mu}_{1}||_{2}^{2}\right)$$
(11)

Similar results with the second component with  $\Sigma_2 = \epsilon I$ 

# A Special Case (II)

From the previous discussion, we know that, given  $\theta$ ,  $q(z_i | x_i)$  is computed as

$$q(z_i = 1 \mid \mathbf{x}_i) = \frac{\alpha \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)}{\alpha \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + (1 - \alpha) \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)}$$
$$= \frac{\alpha \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_1\|_2^2)}{\alpha \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_1\|_2^2) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_2\|_2^2}$$

# A Special Case (II)

From the previous discussion, we know that, given  $\theta$ ,  $q(z_i | x_i)$  is computed as

$$q(z_{i} = 1 | x_{i}) = \frac{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1})}{\alpha \cdot \mathcal{N}(x_{i}; \mu_{1}, \Sigma_{1}) + (1 - \alpha) \cdot \mathcal{N}(x_{i}; \mu_{2}, \Sigma_{2})}$$
  
= 
$$\frac{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2})}{\alpha \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{1}||_{2}^{2}) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} ||x_{i} - \mu_{2}||_{2}^{2})}$$

• When  $\epsilon \to 0$ 

$$q(z_i = 1 \mid x_i) \to \begin{cases} 1 & \|x_i - \mu_1\|_2 < \|x_i - \mu_2\|_2 \\ 0 & \|x_i - \mu_1\|_2 > \|x_i - \mu_2\|_2 \end{cases}$$
(12)

# A Special Case (II)

From the previous discussion, we know that, given  $\theta$ ,  $q(z_i | x_i)$  is computed as

$$q(z_i = 1 \mid \mathbf{x}_i) = \frac{\alpha \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)}{\alpha \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + (1 - \alpha) \cdot \mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)}$$
$$= \frac{\alpha \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_1\|_2^2)}{\alpha \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_1\|_2^2) + (1 - \alpha) \exp(-\frac{1}{2\epsilon} \|\mathbf{x}_i - \boldsymbol{\mu}_2\|_2^2}$$

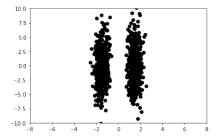
• When  $\epsilon \to 0$ 

$$q(z_i = 1 \mid x_i) \to \begin{cases} 1 & \|x_i - \mu_1\|_2 < \|x_i - \mu_2\|_2 \\ 0 & \|x_i - \mu_1\|_2 > \|x_i - \mu_2\|_2 \end{cases}$$
(12)

 $\triangleright$   $r_i$  in *K*-means is a very special case of  $z_i$  in GMM

# When *K*-means Will Fail?

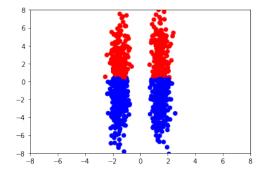
Recall that *K*-means is an extreme case of GMM with  $\Sigma = \epsilon I$  and  $\epsilon \to 0$ 



Parameters

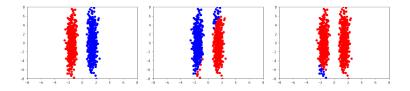
$$\mu_1 = [1.5, 0]^{\mathsf{T}} \qquad \mu_2 = [-1.5, 0]^{\mathsf{T}}$$
$$\Sigma_1 = \Sigma_2 = \text{diag}(0.1, 10.0) \tag{13}$$

Recall that *K*-means is an extreme case of GMM with  $\Sigma = \epsilon I$  and  $\epsilon \rightarrow 0$ 



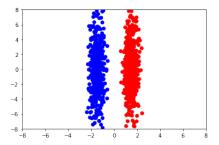
#### With the following setup<sup>1</sup>

- Randomly initialize GMM parameters (instead of using *K*-means to initalize)
- Set covariance\_type to be tied



<sup>&</sup>lt;sup>1</sup>Please refer to the demo code for more detail

Instead of computing the distance between data points to some prototypes, spectral clustering is purely based on the similarity between data points, which can address the problem like this



[Shalev-Shwartz and Ben-David, 2014, Section 22.3]

# Reference



#### Bishop, C. M. and Nasrabadi, N. M. (2006).

Pattern recognition and machine learning, volume 4. Springer.



#### MacKay, D. (2003).

Information theory, inference and learning algorithms. Cambridge university press.



Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.