
CS 6316 Machine Learning
Generative Models

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia



Basic Definition



Data generation process

An idealized process to illustrate the relations among domain set X,
label set Y, and the training set (

1. the probability distribution D over the domain set X
2. sample an instance x ∈ Xaccording to D

3. annotate it using the labeling function 5 as H = 5 (x)

[From Lecture 01]
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Example

Here is an data generation model

?(x) = 0.6 ·N(G;-+ ,�+)︸               ︷︷               ︸
H=+1

+ 0.4 ·N(G;-- ,�-)︸              ︷︷              ︸
H=−1

(1)

with

I -+ = [2, 0]T

I �+ =

[
1.0 0.8
0.8 2.0

]
I -- = [−2, 0]T

I �- =

[
2.0 0.6
0.6 1.0

]
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Example (II)

The data generation model can also be represented with the following
components

?(H = +1) = 0.6 (2)
?(H = −1) = 1 − ?(H = +1) = 0.4 (3)

?(x | H = +1) = N(G;-+ ,�+) (4)
?(x | H = −1) = N(G;-- ,�-) (5)
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Data Generation

The specific data generation process:
for each data point

1. Randomly select a value of H ∈ {+1,−1} based on

?(H = +1) = 0.6 ?(H = −1) = 0.4 (6)

2. Sample x from the corresponding component based on the value
of H

?(x | H) =
{
N(G;-+ ,�+) H = +1
N(G;-- ,�-) H = −1

(7)

3. Add (x , H) to (, go to step 1
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Illustration

With # = 1000 samples, here is the plot

I 588 positive samples and 412 negative samples
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Discriminative Models for Classification

I Discriminative models directly give predictions on the target
variable (e.g., H)

I Example: logistic regression

?(H | x) = �(H〈w , x〉) = 1
1 + 4−H〈w ,x〉

(8)

where w is the model parameter

I Other examples
I SVM with various kernels
I Feed-forward neural network
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Generative Models for Classification

I Basic idea: Building a classifier by simulating the data generation
process

I For the binary classification problem, recall the basic components
of the data generation process
I ?(H)where H ∈ {−1,+1}
I ?(x | H = +1)where x ∈ ℝ3

I ?(x | H = −1)where x ∈ ℝ3

I Challenge in machine learning: we do not know any of them,
instead we have the samples ( from this distribution
I This has always been our assumption in machine learning — we

have no idea about the true data distribution
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Generative Models for Classification (II)

We use a set of distribution @(·) to approximate the true distribution
?(·)

Data Generation Model Generative Model

?(H) @(H)
?(x | H = +1) @(x | H = +1)
?(x | H = −1) @(x | H = −1)
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Learning with Generative Models

1. Define distributions for all components

2. Estimate the parameters for each component distribution
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Defining Distributions

A typical way of defining distributions for generative models is based
on our understanding about the problem

I Output domain H ∈ {+1,−1}: Bernoulli distribution

?(H) = Bern(H; 
) = 
�(H=+1)(1 − 
)�(H=−1) (9)

where 
 ∈ (0, 1) is the parameter
I Input domain x ∈ ℝ3: Gaussian distribution

?(x | H = +1) = N(x;-+ ,�+) (10)

where -+ and �+ are the parameters
I Similarly, for ?(x | H = −1)

?(x | H = −1) = N(x;-- ,�-) (11)

where -- and �- are the parameters
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Parameter Estimation

I The collection of the parameters

) = {
, -+ ,�+ , -- ,�-} (12)

I Training data ( = {(x1 , H1), . . . , (x< , H<)}

I Learning algorithm: Maximum Likelihood Estimation (MLE)
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Maximum Likelihood Estimation (MLE)

MLE defined on the whole distribution @(x , H)

)← argmax
)′

<∑
8=1

log @(x8 , H8 ;)′) (13)

Based on the chain rule of probability

@(x , H;)) = @(H; 
)@(x | H;-H ,�H), (14)

Therefore

)̂← argmax
)

{ <∑
8=1

log log @(H8 ; 
) +
<∑
8=1

log @(x8 | H8 ;-H ,�H)
}

the last item has two components, depending on the value of H
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MLE: Bernoulli Distribution

Recall the definition of Bernoulli distribution, we have
<∑
8=1

log @(H8 ; 
) =
<∑
8=1
{�(H8 = +1) log 
 + �(H8 = −1) log(1 − 
)} (15)

Then, the value of 
 can be estimated from

3
∑<
8=1 log @(H8 ; 
)

3

=

∑<
8=1 �(H8 = +1)



−

∑<
8=1 �(H8 = −1)

1 − 
 = 0 (16)

therefore,


 =

∑<
8=1 �(H8 = +1)

<
(17)
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MLE: Gaussian Distribution

The definition of multi-variate Gaussian distribution

@(x | H;-,�) = 1
(2�)3/2 |�|

exp
(
− 1

2 (x − -)
T�−1(x − -)

)
(18)

I For H = +1, MLE on -+ and �+ will only consider the samples x
with H = +1 (assume it’s (+)

I MLE on -+

- =
1
|(+ |

∑
x8∈(+

x8 (19)

I MLE on �+

�+ =
1
|(+ |

∑
x8∈(+
(x8 − -)(x8 − -)T (20)

I Exercise: prove equations 19 and 20 with 3 = 1
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Example: Parameter Estimation

Given # = 1000 samples, here are the parameters

Parameter ?(·) @(·)

-+ [2, 0]T [1.95,−0.11]T

�+

[
1.0 0.8
0.8 2.0

] [
0.88 0.74
0.74 1.97

]
-- [−2, 0]T [−2.08, 0.08]T

�-

[
2.0 0.6
0.6 1.0

] [
1.88 0.55
0.55 1.07

]
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Prediction

I For a new data point x′, the prediction is given as

@(H′ | x′) =
@(H′)@(x | H′)

@(x′) ∝ @(H′)@(x′ | H′) (21)

No need to compute @(x′)

I Prediction rule

H′ =

{
+1 @(H′ = +1 | x′) > @(H′ = −1 | x′)
−1 @(H′ = +1 | x′) < @(H′ = +1 | x′) (22)

I Although equation 22 looks like the one used in the Bayes
optimal predictor, the prediction power is limited by

@(H′ | x′) ≈ ?(H | x) (23)

Again, we don’t know ?(·)

17



Prediction

I For a new data point x′, the prediction is given as

@(H′ | x′) =
@(H′)@(x | H′)

@(x′) ∝ @(H′)@(x′ | H′) (21)

No need to compute @(x′)
I Prediction rule

H′ =

{
+1 @(H′ = +1 | x′) > @(H′ = −1 | x′)
−1 @(H′ = +1 | x′) < @(H′ = +1 | x′) (22)

I Although equation 22 looks like the one used in the Bayes
optimal predictor, the prediction power is limited by

@(H′ | x′) ≈ ?(H | x) (23)

Again, we don’t know ?(·)

17



Prediction

I For a new data point x′, the prediction is given as

@(H′ | x′) =
@(H′)@(x | H′)

@(x′) ∝ @(H′)@(x′ | H′) (21)

No need to compute @(x′)
I Prediction rule

H′ =

{
+1 @(H′ = +1 | x′) > @(H′ = −1 | x′)
−1 @(H′ = +1 | x′) < @(H′ = +1 | x′) (22)

I Although equation 22 looks like the one used in the Bayes
optimal predictor, the prediction power is limited by

@(H′ | x′) ≈ ?(H | x) (23)

Again, we don’t know ?(·)
17



Naive Bayes Classifiers



Number of Parameters

Assume x = (G·,1 , . . . , G·,3) ∈ ℝ3, then the number of parameters in
@(x , H)

I @(H): 1 (
)
I @(x | H = +1):

I -+ ∈ ℝ3 : 3 parameters
I �+ ∈ ℝ3×3 : 32 parameters

I @(x | H = −1): 32 + 3 parameters

In total, we have 232 + 23 + 1 parameters

19



Challenge of Parameter Estimation

I When 3 = 100, we have 232 + 23 + 1 = 20201 parameters
I A close look about the covariance matrix � in a multivariate

Gaussian distribution

� =


�2

1,1 · · · �2
1,3

...
. . .

...

�2
3,1 · · · �2

3,3

 (24)

I To reduce the number of parameters, we assume

�8 , 9 = 0 if 8 ≠ 9 (25)

20



Challenge of Parameter Estimation

I When 3 = 100, we have 232 + 23 + 1 = 20201 parameters
I A close look about the covariance matrix � in a multivariate

Gaussian distribution

� =


�2

1,1 · · · �2
1,3

...
. . .

...

�2
3,1 · · · �2

3,3

 (24)

I To reduce the number of parameters, we assume

�8 , 9 = 0 if 8 ≠ 9 (25)

20



Diagonal Covariance Matrix

With the diagonal covariance matrix

� =


�2

1,1 · · · 0
...

. . .
...

0 · · · �2
3,3

 (26)

Now, the multivariate Gaussian distribution can be rewritten with

|�| =

3∏
9=1

�2
9 , 9 (27)

(x − -)T�−1(x − -) =

3∑
9=1

(G·, 9 − �9)2

�2
9 , 9

(28)
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Diagonal Covariance Matrix (II)

In other words

@(x | H, -,�) =
3∏
9=1

@(G·, 9 | H;�9 , �2
9 , 9) (29)

I Conditional Independence: Equation 29 means, given H, each
component G 9 is independent of other components

I This is a strong and naive assumption about @(x | ·)
I Together with @(H), this generative model is called the Naive

Bayes classifier
I Parameter estimation can be done per dimension
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Example: Parameter Estimation

Given # = 1000 samples, here are the parameters

Parameter ?(·) @(·) Naive Bayes

-+ [2, 0]T [1.95,−0.11]T [1.95,−0.11]T

�+

[
1.0 0.8
0.8 2.0

] [
0.88 0.74
0.74 1.97

] [
0.88 0

0 1.97

]
-- [−2, 0]T [−2.08, 0.08]T [−2.08, 0.08]T

�-

[
2.0 0.6
0.6 1.0

] [
1.88 0.55
0.55 1.07

] [
1.88 0

0 1.07

]

23



Latent Variable Models



Data Generation Model, Revisited

Consider the following model again without any label information

?(x) = 
 ·N(G;-1 ,�1)︸             ︷︷             ︸
2=1

+ (1 − 
) ·N(G;-2 ,�2)︸                    ︷︷                    ︸
2=2

(30)

I No labeling information
I Instead of having two classes, now it has two components
2 ∈ {1, 2}

I It is a specific case of Gaussian mixture models
I A mixture model with two Gaussian components
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Data Generation

The data generation process: for each data point

1. Randomly select a component 2 based on

?(2 = 1) = 
 ?(2 = 2) = 1 − 
 (31)

2. Sample x from the corresponding component 2

?(x | H) =
{
N(G;-1 ,�1) 2 = 1
N(G;-2 ,�2) 2 = 2

(32)

3. Add x to (, go to step 1

26
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Illustration

Here is an example data set ( with 1,000 samples

No label information available

27



The Learning Problem

Consider using the following distribution to fit the data (

@(x) = 
 ·N(G;-1 ,�1) + (1 − 
) ·N(G;-2 ,�2) (33)

I This is a density estimation problem — one of the unsupervised
learning problems

I The number of components in @(x) is part of the assumption
based on our understanding about the data

I Without knowing the true data distribution, the number of
components is treated as a hyper-parameter (predetermined
before learning)

28
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Parameter Estimation

I Based on the general form of GMMs, the parameters are
) = {
, -1 ,�1 , -2 ,�2}

I Given a set of training example ( = {x1 , . . . , x<}, the
straightforward method is MLE

!()) =

<∑
8=1

log @(x8 ;))

=

<∑
8=1

log
(

 ·N(x8 ;-1 ,�1)

+(1 − 
) ·N(x8 ;-2 ,�2)
)

(34)

I Learning: )← argmax)′ !()′)
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Singularity in GMM Parameter Estimation

Singularity happens when one of the mixture component only
captures a single data point, which eventually leads the
(log-)likelihood to∞

I It is easy to overfit the training set using GMMs, for example
when  = <

I This issue does not exist when estimating parameters for a single
Gaussian distribution
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Gradient-based Learning

Recall the definition of !())

!()) =
<∑
8=1

log
(

 ·N(x8 ;-1 ,�1) + (1 − 
) ·N(x8 ;-2 ,�2)

)
(35)

I There is no closed form solution of ∇!()) = 0
I E.g., the value of 
 depends on {-2 ,�2}22=1, vice versa

I Gradient-based learning is still feasible as

)(new) ← )(old) + � · ∇!())

31



Latent Variable Models

To rewrite equation 33 into a full probabilistic form, we introduce a
random variable I ∈ {1, 2}, with

@(I = 1) = 
 @(I = 2) = 1 − 
 (36)

or
@(I) = 
�(I=1)(1 − 
)�(I=2) (37)

I I is a random variable and indicates the mixture component for x
(a similar role as H in the classification problem)

I I is not directly observed in the data, therefore it is a latent
(random) variable.
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GMM with Latent Variable

With latent variable I, we can rewrite the probabilistic model as a
joint distribution over x and I

@(x , I) = @(I)@(x | I)
= 
�(I=1) ·N(x;-1 ,�1)�(I=1)

· (1 − 
)�(I=2) ·N(x;-2 ,�2)�(I=2) (38)

And the marginal probability ?(x) is the same as in equation 33

@(x) = @(I = 1)@(x | I = 1) + @(I = 2)@(x | I = 2)
= 
 ·N(G;-1 ,�1) + (1 − 
) ·N(G;-2 ,�2) (39)
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Parameter Estimation: MLE?

For each x8 , we introduce a latent variable I8 as mixture component
indicator, then the log likelihood is defined as

ℓ ()) =

<∑
8=1

log @(x8 , I8)

=

<∑
8=1

log
{

�(I8=1) ·N(x8 ;-1 ,�1)�(I8=1)

· (1 − 
)�(I8=2) ·N(x8 ;-2 ,�2)�(I8=2)} (40)

=

<∑
8=1

{
�(I8 = 1) log 
 + �(I8 = 1) logN(x8 ;-1 ,�1)

�(I8 = 2) log(1 − 
) + �(I8 = 2) logN(x8 ;-2 ,�2)
}

Question: we have already know that I8 is a random variable, but
� [I8 = 1] = 
?
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EM Algorithm



Basic Idea

I The key challenge of GMMwith latent variables is that we do not
know the distributions of {I8}

I The basic idea of the EM algorithm is to alternatively address the
challenge between

{I8}<8=1 ⇔ ) = {
, -1 ,�1 , -2 ,�2} (41)

I Basic procedure
1. Fix ), estimate the distributions of {I8}<8=1
2. Fix the distribution of {I8}<8=1, estimate the value of )
3. Go back to step 1

36



Basic Idea

I The key challenge of GMMwith latent variables is that we do not
know the distributions of {I8}

I The basic idea of the EM algorithm is to alternatively address the
challenge between

{I8}<8=1 ⇔ ) = {
, -1 ,�1 , -2 ,�2} (41)

I Basic procedure
1. Fix ), estimate the distributions of {I8}<8=1
2. Fix the distribution of {I8}<8=1, estimate the value of )
3. Go back to step 1

36



Basic Idea

I The key challenge of GMMwith latent variables is that we do not
know the distributions of {I8}

I The basic idea of the EM algorithm is to alternatively address the
challenge between

{I8}<8=1 ⇔ ) = {
, -1 ,�1 , -2 ,�2} (41)

I Basic procedure
1. Fix ), estimate the distributions of {I8}<8=1
2. Fix the distribution of {I8}<8=1, estimate the value of )
3. Go back to step 1

36



How to Estimate I8?

Fix ), we can estimate the distribution of each I8 as (with equation 38
and 39)

@(I8 | x8) =
@(x8 , I8)
@(x8)

(42)

Particularly, we have

@(I8 = 1 | x8) =

 ·N(x8 ;-1 ,�1)


 ·N(x8 ;-1 ,�1) + (1 − 
) ·N(x8 ;-2 ,�2)
(43)
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Expectation

Let �8 be the expectation of I8 under the distribution of @(I8 | x8)

� [I8] = �8 (44)

I Since I8 is a Bernoulli random variable, we also have
@(I8 = 1 | x8) = �8

I Furthermore, the expectation of �(I8 = 1) under the distribution
of @(I8 | x8)

� [�(I8 = 1)] = �(I8 = 1) · @(I8 = 1 | x8)
+�(I8 = 1) · @(I8 = 2 | x8)

= @(I8 = 1) = �8 (45)
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Parameter Estimation (I)

Given

ℓ ()) =
<∑
8=1

{
�(I8 = 1) log 
 + �(I8 = 1) logN(x8 ;-1 ,�1)

�(I8 = 2) log(1 − 
) + �(I8 = 2) logN(x8 ;-2 ,�2)
} (46)

To maximize ℓ ())with respect to 
 we have

<∑
8=1

{ �(I8 = 1)



− �(I8 = 2)
1 − 


}
= 0 (47)

and


 | z =

∑<
8=1 �(I8 = 1)∑<

8=1(�(I8 = 1) + �(I8 = 2)) =
∑<
8=1 �(I8 = 1)

<
(48)

which is similar to the classification example, except that I8 is a
random variable
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Parameter Estimation (II)

Without going through the details, the estimate of mean and covariance
take the similar forms. For example, for the first component, we have

-1 | z =
1
<

<∑
8=1

�(I8 = 1)x8 (49)

�1 | z =
1
<

<∑
8=1

�(I8 = 1)(x8 − -1)(x8 − -1)T (50)

Question: how to eliminate the randomness in 
, -1, �1 (and similarly
in -2, �2)?
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Expectation (II)

With � [�(I8 = 1)] = �8 , we have


 = � [
 | z] = 1
<

<∑
8=1

� [�(I8 = 1)] x8

=
1
<

<∑
8=1

�8x8 (51)

Similarly, we have

-1 =
1
<

<∑
8=1

�8x8 -2 =
1
<

<∑
8=1
(1 − �8)x8

�1 =
1
<

<∑
8=1

�8(x8 − -1)(x8 − -1)T

�2 =
1
<

<∑
8=1
(1 − �8)(x8 − -2)(x8 − -2)T (52)
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The EM Algorithm, Review

The algorithm iteratively run the following two steps:

E-step Given ), for each x8 , estimate the distribution of the
corresponding latent variable I8

@(I8 | x8) =
@(x8 , I8)
@(x8)

(53)

and its expectation �8

M-step Given {I8}<8=1, maximize the log-likelihood function
ℓ ()) and estimate the parameter ) with {�8}<8=1
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Illustration

[Bishop and Nasrabadi, 2006, Page 437]
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Variational Inference (Optional)



The Computation of @(I | x)

I In the previous example, we were able to compute the analytic
solution of @(I | x) as

@(I | x) = @(x , I)
@(x) (54)

where @(x) = ∑
I @(x , I)

I Challenge: Unlike the simple case in GMMs, usually @(x) is
difficult to compute

@(x) =
∑
I

@(x , I) discrete (55)

=

∫
I

@(x , I)3I continuous (56)
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Solution

I Instead of computing @(x) and then @(I | x), we propose another
distribution @′(I | x) to approximate @(I | x)

@′(I | x) ≈ @(I | x) (57)

where @′(I | x) should be simple enough to facilitate the
computation

I The objective of finding a good approximation is the
Kullback–Leibler (KL) divergence

KL(@′‖@) =
∑
I

@′(I | x) log
@′(I | x)
@(I | x) discrete

=

∫
I
@′(I | x) log

@′(I | x)
@(I | x) 3I continuous
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KL Divergence

I KL(@′‖@) ≥ 0 and the equality holds if and only if @′ = @

I Consider the continuous case for the visualization purpose.

KL(@′‖@) =
∫
I

@′(I | x) log
@′(I | x)
@(I | x) 3I (58)

I Regardless what @(I | x) looks like, we decide to define @′(I | x)
for simplicity

I Because of @(I | x) in equation 58, the challenge still exists
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ELBo

The learning objective for @′(I | x) is

KL(@′‖@) =

∫
I
@′(I | x) log

@′(I | x)
@(I | x) 3I

=

∫
I
@′(I | x) log

@′(I | x)@(x)
@(I, x) 3I

=

∫
I
@′(I | x) log

@′(I | x)@(x)
@(x | I)@(I) 3I

=

∫
I
@′(I | x)

{
− log @(x | I) + log

@′(I | x)
@(I) + log @(x)

}
3I

= −�
[
log @(x | I)

]
+ KL(@′(I | x)‖@(I)) + log @(x)

= −ELBo + log @(x)

Minimize KL(@′‖@) is equivalent to maximize the Evidence Lower
Bound (ELBo)
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