CS 6316 Machine Learning
CNNs and RNNs

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia

WA LLP

IVERSITY OF MR
WEOTION RO LANCIRGE PRICESSING LAB

Overview

1. Convolutional Neural Networks
2. Recurrent Neural Networks

3. RNN Language Modeling

4. Challenge of Training RNNs

Convolutional Neural Networks

LeNet-5

A classical neural network architecture designed for handwritten and
machine-printed character recognition.

Ci: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 2

32x32 S2: f. maps
6@14x14

Full conAeclion Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

This architecture repeat the two components twice before connecting
with a fully-connected layer

> convolutional layer

> subsampling (pooling) layer

[LeCun et al., 1998]

Convolutional Operations

1-D convolutional operation is defined as
T
Cj=m Xjjin-1 (1)

where m € R" is convolutional filter with window size n, x € RT
input signal withsize T,and j < T —n + 1.

Convolutional Operations

1-D convolutional operation is defined as
T
Cj=m Xjjin-1 (1)

where m € R" is convolutional filter with window size n, x € RT
input signal withsize T,and j < T —n + 1.

With

> m = [my, my, ms]", and
_ T
> X = [x1/x2/x3/x4/- o '/xT] 7
when j =2
Cy = M1Xp + MyX3 + M3X4 (2)

Convolutional Operations (ll)

An example of 1-D convolutional operations

Input word embedding Results
0.8 1.2 3.5 1.4 163 | 3.76
0.7 0.1 05 | 08 0.22 | 0.59
1.3 24 0.1 0.5 |:‘> 254 | 0.39
21 1.6 3.0 41 211 | 3.57
3.0 0.6 0.3 1.5 0.93 | 0.51

t=1 0.1 1.0 0.1 0

t=2 0 0.1 1.0 0.1

Convolutional filter
at each time step

There are three popularly used pooling techniques

> Max pooling

Inputs Results
1.63 @ 3.76 3.76
0.22 0.59 0.59
254 039 [> 254
2.11 3.57 1-D l_/lax 3.57

pooling
0.93 0.51 0.93

There are three popularly used pooling techniques

> Max pooling

Inputs Results
1.63 @ 3.76 3.76
0.22 0.59 0.59
254 039 [> 254
2.11 3.57 1-D l_/lax 3.57

pooling
0.93 0.51 0.93

> Average pooling [LeCun et al., 1998]
> Min pooling

TextCNN

A simple and effective convolutional neural network architecture for
text classification [Kim, 2014]

Conv_olutlonal Tanh Ma.x
Filter 1 Pooling
Word Convolutional Tanh Max Softmax
Embedding Filter 2 Pooling Function
Conv.olutlonal Tanh Ma-x
Filter 3 Pooling

> torch.nn.Conv1d: convolutional operation on each dimension of the word
embeddings (no cross-dimension convolution)

> torch.tanh
> torch.max: max pooling on each dimension of the word embeddings
> torch.cat: concatenate three vectors from max pooling to form one single vector

> In actual implementation, the input is a 3-D tensor instead of a 2-D matrix

Advantages of CNNs

Comparing to Feed-forward NNs: Parameter sharing, sparse
connections

Figure: (1) upper plot: convolutional layer; (2) lower plot: fully-connected
layer.

[Goodfellow et al., 2016]

Recurrent Neural Networks

Recurrent Neural Networks (RNNSs)

A simple RNN is defined by the following recursive function

hi = f(xt, hi1) (3)

and depicted as

@ ©

where

> h;_1: hidden state at time step ¢ — 1
> x;: input at time step £

> h;: hidden state at time step ¢

10

A Simple Transition Function

In the simplest case, the transition function f is defined with an
element-wise Sigmoid function and a linear transformation of x; and
hi1

hy = f(xt, hi—1) = c(Wyhi—1 + Wix; + b) (4)

where
> x;: input word embedding
» h;_1: hidden statement from previous time step
> W),: parameter matrix for hidden states
> W;: parameter matrix for inputs

> b: bias term (also a parameter)

11

Sigmoid Function

A Sigmoid function with one-dimensional input x € (—o0, c0)

14

o(x) = 0.5

1—eX

The potential numeric issue caused by the Sigmoid function

> o(x) > 1withx > 6
> o(x) > 0,x < -6
The output of the Sigmoid function will approximate a constant,

when the input value is beyond certain ranges

12

Unfolding RNNs

We can unfold this recursive definition of a RNN

hi = f(xt, hi1) (5)

13

Unfolding RNNs

We can unfold this recursive definition of a RNN

hi = f(xt, hi1) (5)

as

(=) @) ()

hy = f(xt f(xt 1, hi-2))
fxe, f(xio, f(xi-2, hi-3)))

flx, flxir, f(xi—2,--- f(x1, ho) -+ +))) (6)

13

Base condition defines the starting point of the recursive computation

(=)

hy = f(xt/f(xt—llf(xt—zl o 'f(xlr ho)---))) (7)

> ho: zero vector or parameter

> x1:inputattimet =1

14

RNN for Sequential Prediction

In general, RNNs can be used for any sequential modeling tasks

15

Sequential Modeling as Classification

> Prediction at each time step ¢

Jr = argmax P(y; hy) (8)
Yy

16

Sequential Modeling as Classification

> Prediction at each time step ¢

Jr = argmax P(y; hy) (8)
Yy

> Loss at single time step ¢

Le(ye, §r) = —log P(ys; hyt) 9)

16

Sequential Modeling as Classification

> Prediction at each time step ¢

Jr = argmax P(y; hy) (8)
Yy

> Loss at single time step ¢

Le(ye, §r) = —log P(ys; hyt) 9)

» The total loss

T
(=" Ly, 1) (10)
t=1

16

RNN Language Modeling

Language Models

A language model defines the probability of x; given
X = (xl/ X2, 000y xt—l) as

P(xt | xl/-'~1xt—1) (11)
and the joint probability as

P(x1t) = P(x1)-P(x2 | x1)

P(xt | x1,X2,...,X7-1)

18

Language Modeling with RNNs

Using RNNSs for language modeling

with two special tokens

{D/'xll"'/xT/.}

19

RNN Language Models

For a given sentence {x1, ..., x;}, the input at time f is word
embedding x;

The probability distribution of next word X;
exp(w] Ji-1)

Lyver exp(w; hi-1)

P(X; =x | x14-1) = (12)

where

> w, , is the output weight vector (parameter) associated with
word x
> %/ is the word vocabulary 20

Special Cases

Similar to statistical language modeling, there are also two special
cases that we need to consider

{D/'xll"'/xT/.}

The corresponding prediction functions are defined as

> Attimef =1
P(X1 = x) < exp(w; Jio) (13)
> Attimet =T

P(Xt = W | x1.7-1) o« exp(w] hr_1) (14) 2

Challenge of Training RNNs

The training objective for each timestep is to predict the next token in
the text

.
> Prediction at step t, P(X; = x | x1,4-1) = 5 explwo,fi-1)

e exp(onrx, 1)

> Lossatstep f, Ly = —log P(X; = x | x1:4-1)

23

Let 0 denote all model parameters

o oL
0" Z 50 (15)

Backpropagation Through Time [Rumelhart et al., 1985, BPTT]

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

> Output parameter matrix W, = (w1, ..., Wo,v)

25

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

> OQutput parameter matrix W, = (w1, ..., Wo,v)

> Input word embedding matrix X = (x1,...,xy)

25

Model Parameters

Before computing the gradient of each L; with respect to model
parameters, let us count how many parameters that we need consider

> OQutput parameter matrix W, = (w1, ..., Wo,v)
> Input word embedding matrix X = (x1,...,xy)

> Neural network parameters Wy, W;, b

25

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

> Output model parameter %

26

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

> Output model parameter 5~ aLt

> Neural network parameters, for example W,

ILy oL ”&hm oh;
IW, I,Z{aht' D]) aw,) (6)

Similar patterns for the other two neural network parameters W;
and b

26

Backpropagation Through Time

Take time step t as an example, we can take a look the gradient
computation of some specific parameters

> Output model parameter 5~ aLt

> Neural network parameters, for example W,

ILy oLy 1o, Oh;
: 6
oW, IZ{aht B I,) ow,) (16)
Similar patterns for the other two neural network parameters W;

and b
> Word embedding 5=+ aLt
> E.g., word embeddmg xp is the input of hy if t/ < t, s0 ...

26

Challenges

For each timestep, we need to compute the gradient using the chain

rule: .
aLt _ . aLt doh]+l
w, - ; {3ht . oh], (91/\//1 } (17)

The chain rule of gradient will cause two potential problems in
training RNNs

> vanishing gradients: ‘;—lg -0

> exploding gradients: % > M

[Pascanu et al., 2013]

27

Exploding Gradients

Solution: norm clipping [Pascanu et al., 2013].
Consider the gradient g = g—g,

A

8
— T — 18
8T gl (8)

when ||g]| > 7.

> Usually, 7 = 3 or 5 in practice.

> Smaller gradient will cause slower learning progress

28

Vanishing Gradients

Solution:

> initialize parameters carefully

> replace hidden state transition function o(-) with other options

fx, hi—1) = c(Wrhi—1 + Wix; + b) (19)

» LSTM [Hochreiter and Schmidhuber, 1997]
» GRU [Cho et al., 2014]

29

fe
Ct
O
hy

Rather than directly taking input and hidden state as simple
transition function, LSTM relies on three cates to control how much
information it should take from input and hidden state before
combining them together

= 0(Wyixt + Wpihi—1 + Weici1 + bj)

= 0(Wypxt + Wyphiog + Weperq +by)

= fioci—1 + i otanh(Wyexy + Wychi—q + be)
= 0(Wxoxt + Wioht—1 + Weoct +bo)

= o0 otanh(c;)

where o is the element-wise multiplication, {W.} and {b.} are
parameters. [Graves, 2013]

30

Reference

B W D W W

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y. (2014).
On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259.

Goodfellow, I, Bengio, Y., Courville, A., and Bengio, Y. (2016).
Deep Learning, volume 1.
MIT press Cambridge.

Graves, A. (2013).
Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850.

Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural computation, 9(8):1735-1780.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.

In Dasgupta, S. and McAllester, D., editors, Proceedings of the 3o0th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 1310-1318, Atlanta, Georgia, USA. PMLR.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).

Learning internal representations by error propagation.
Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.

31

	Convolutional Neural Networks
	Recurrent Neural Networks
	RNN Language Modeling
	Challenge of Training RNNs

