
CS 6316 Machine Learning
Support Vector Machines and Kernel Methods

Yangfeng Ji

Information and Language Processing Lab
Department of Computer Science
University of Virginia



Overview

1. Review: Linear Functions

2. Separable Cases

3. Constrained Optimization

4. Non-separable Cases

5. Dual Optimization Problem

6. Kernel Methods

Readings: [Shalev-Shwartz and Ben-David, 2014, Chapter 15 & 16]

1



Review: Linear Functions



Linear Functions

Consider a two-dimensional case with w = (1, 1,−0.5)

5 (x) = wTx + 1 = G1 + G2 − 0.5 (1)

G1

G2

Different values of 5 (x)map to different areas on this 2-D space. For
example, the following equation defines the blue line !.

5 (x) = wTx + 1 = 0 (2)
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Properties of Linear Functions (Cont.)

Furthermore,
5 (x) = G1 + G2 − 0.5 = 0 (3)

separates the 2-D space ℝ2 into two half spaces

G1

G2

5 (x) > 0

5 (x) < 0
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Properties of Linear Functions (Cont.)

The distance of point x to line ! : 5 (x) = 〈w , x〉 + 1 = 0 is given by

5 (x)
‖w‖2

=
〈w , x〉 + 1
‖x‖2

= 〈 w
‖w‖2

, x〉 + 1

‖w‖2
(4)

G1

G2

x
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Separable Cases



Geometric Margin

The geometric margin of a linear binary classifier ℎ(x) = 〈w , x〉 + 1 at
a point x is its distance to the hyper-plane 〈w , x〉 = 0

�ℎ(x) =
|〈w , x〉 + 1 |
‖w‖2

(5)
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Geometric Margin (II)

The geometric margin of ℎ(x) on a set of examples ) = {x1 , . . . , x<} is
the minimal distance over these examples

�ℎ()) = min
x′∈)

�ℎ(x′) (6)

[Mohri et al., 2018, Page 80]
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Half-Space Hypothesis Space

I Training set ( = {(x1 , H1), . . . , (x< , H<)} with x8 ∈ ℝ3 and
H8 ∈ {+1,−1}

I If the training set is linearly separable

H8(〈w , x8〉 + 1) > 0 ∀8 ∈ [<] (7)

I Linearly separable cases
I Existence of equation 7
I All halfspace predictors that satisfy the condition in equation 7 are

ERM hypotheses
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Which Hypothesis is Better?

Is the one represented by the green line or the black dashed line?

I Intuitively, a hypothesis with larger margin is better, because it is
more robust to noise

I Final definition of margin will be provided later

[Shalev-Shwartz and Ben-David, 2014, Page 203] 10
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Hard SVM/Separable Cases

The mathematical formulation of the previous idea

� = max
(w ,1)

min
8∈[<]

|〈w , x8〉 + 1 |
‖w‖2

(8)

s.t. H8(〈w , x8〉 + 1) > 0 ∀8 (9)

s.t. means subject to in optimization, to introduce constraints
Notations:

I H8(〈w , x8〉 + 1) > 0 ∀8: guarantee (w , 1) is an ERM hypothesis

I min8∈[<]: calculate the margin between a hyper-plane and a set of
examples

I max(w ,1): maximize the margin

Overall, the optimization problem is to find a hypothesis that (1)
classifies all training example correctly and (2) also has the largest
margin.
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Illustration

Original form

� = max
(w ,1)

min
8∈[<]

|〈w , x8〉 + 1 |
‖w‖2

(10)

s.t. H8(〈w , x8〉 + 1) > 0 ∀8 (11)

An example with the margin as 1
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Alternative Forms

I Original form

� = max
(w ,1)

min
8∈[<]

|〈w , x8〉 + 1 |
‖w‖2

(12)

s.t. H8(〈w , x8〉 + 1) > 0 ∀8 (13)

I Alternative form 1

� = max
(w ,1)

min
8∈[<]

H8(〈w , x8〉 + 1)
‖w‖2

(14)

I Alternative form 2

� = max
(w ,1): min8∈[<] H8 (〈w ,x8〉+1=1

1
‖w‖2

(15)

= max
(w ,1): H8 (〈w ,x8〉+1≥1

1
‖w‖2

(16)
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Alternative Forms (II)

I Alternative form 2

� = max
(w ,1): H8 (〈w ,x8〉+1≥1

1
‖w‖2

(17)

I Alternative form 3: Quadratic programming (QP)

min
(w ,1)

1
2 ‖w‖

2
2

s.t. H8(〈w , x8〉 + 1) ≥ 1, ∀8 ∈ [<]
(18)

which is a constrained optimization problem that can be solved
by standard QP packages

I Exercise: Solve a SVM problem with quadratic programming
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Unconstrained Optimization Problem

The quadratic programming problem with constraints can be
converted to an unconstrained optimization problem with the
Lagrangian method

!(w , 1, ") = 1
2 ‖w‖

2
2 −

<∑
8=1


8(H8(〈w , x8〉 + 1) − 1) (19)

where

I " = {
1 , . . . , 
<} is the Lagrange multiplier, and
I 
8 ≥ 0 is associated with the 8-th training example

Can you identify the similarity between Eq. 19 and regularized linear
regression?
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SVM Online Demo

Link
16
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Constrained Optimization



Constrained Optimization Problems: Definition

A generic formulation of constrained optimization

I X⊆ ℝ3 and
I 5 , 68 : X→ ℝ, ∀8 ∈ [<]

Then, a constrained optimization problem is defined in the form of

min
x∈X

5 (x) (20)

s.t. 68(x) ≤ 0,∀8 ∈ [<] (21)

Comments

I Unlike a learning problem, here x is the target variable for
optimization

I Special cases of 68(x): (1) 68(x) = 0, (2) 68(x) ≥ 0, and (3) 68(x) ≤ 1
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Lagrangian

The Lagrangian associated to the general constrained optimization
problem defined in equation 20 – 21 is the function defined over
X×ℝ<

+ as

!(x , ") = 5 (x) +
<∑
8=1


8 68(x) (22)

where

I " = (
1 , . . . , 
<) ∈ ℝ<
+

I 
8 ≥ 0 for any 8 ∈ [<]

19



Karush-Kuhn-Tucker’s Theorem

Assume that 5 , 68 : X→ ℝ, ∀8 ∈ [<] are convex and differentiable
and that the constraints are qualified. Then x′ is a solution of the
constrained problem if and only if there exist "′ ≥ 0 such that

∇x!(x′, "′) = ∇x 5 (x′) + "′ · ∇x 6(x) = 0 (23)
∇"!(x , ") = 6(x′) ≤ 0 (24)

"′ · 6(x′) =

<∑
8=1


′8 68(x
′) = 0 (25)

Equations 23 – 25 are called KKT conditions

[Mohri et al., 2018, Thm B.30]
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KKT in SVM

Apply the KKT conditions to the SVM problem

!(w , 1, ") = 1
2 ‖w‖

2
2 −

<∑
8=1


8(H8(〈w , x8〉 + 1) − 1) (26)

We have

∇w! = w −
<∑
8=1


8H8x8 = 0 ⇒ w =

<∑
8=1


8H8x8

∇1! = −
<∑
8=1


8H8 = 0 ⇒
<∑
8=1


8H8 = 0

∀8 , 
8(H8(〈w , x8〉 + 1) − 1) = 0 ⇒ 
8 = 0 or H8(〈w , x8〉 + 1) = 1
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Support Vectors

Consider the implication of the last equation in the previous page, ∀8

I 
8 > 0 and H8(〈w , x8〉 + 1) = 1
or

I 
8 = 0 and H8(〈w , x8〉 + 1) ≥ 1

w =

<∑
8=1


8H8x8 (27)

I Examples with 
8 > 0 are called support vectors
I In ℝ3, 3 + 1 examples are sufficient to define a hyper-plane
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Non-separable Cases



Non-separable Cases

Recall the separable case:

min
(w ,1)

1
2 ‖w‖

2
2

s.t. H8(〈w , x8〉 + 1) ≥ 1, ∀8 ∈ [<]
(28)

For non-separable cases, there always exists an x8 , such that

H8(〈w , x8〉 + 1) � 1 (29)

or, we can formulate it as

H8(〈w , x8〉 + 1) ≥ 1 − �8 (30)

with �8 ≥ 0
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Geometric Meaning of �8

Consider the relaxed constraint

H8(〈w , x8〉 + 1) ≥ 1 − �8 (31)

and three cases of �8

I �8 = 0
I 0 < �8 < 1
I �8 ≥ 1
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Non-separable Cases (II)

In general, the SVM problem of non-separable cases can be
formulated as

min
(w ,1)

1
2 ‖w‖

2
2 + �

<∑
8=1

�
?

8

s.t. H8(〈w , x8〉 + 1) ≥ 1 − �8 , ∀8 ∈ [<]
�8 ≥ 0

(32)

where � ≥ 0, ? ≥ 1, and {�8}<8=1 ≥ 0 are known as slack variables and
are commonly used in optimization to define relaxed versions of
constraints.
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Lagrangian

Follows the same procedure as the separable cases, the Lagrangian is
defined as

!(w , 1, /, ", #) =1
2 ‖w‖

2
2 + �

<∑
8=1

�8

−
<∑
8=1


8(H8(wTx8 + 1) − 1 + �8)

−
<∑
8=1

�8�8

(33)

with 
8 , �8 ≥ 0

Exercise: show the KKT conditions of equation 33
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Support Vectors

The first two equations in the KKT conditions are similar to the
separable cases, and the rest are


8 + �8 = � (34)

8 = 0 or H8(wTx8 + 1) = 1 − �8 (35)
�8 = 0 or �8 = 0 (36)

Depending the value of �8 , there are two types of support vectors

I �8 = 0: �8 ≥ 0 and 0 < 
8 ≤ �
I x8 may lie on the marginal hyper-planes (as in the separable case)

I �8 > 0: �8 = 0 and 
8 = �
I x8 is an outlier
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Support Vectors (II)

Two types of support vectors

I 
8 = �: x8 is an outlier
I 0 < 
8 < �: x8 lies on the marginal hyper-planes

29



Dual Optimization Problem



Lagrangian

Combine the Lagrangian

! =
1
2 ‖w‖

2
2 −

<∑
8=1


8[H8(〈w , x8〉 + 1) − 1]

=
1
2 ‖w‖

2
2 −

<∑
8=1


8H8 〈w , x8〉 − 1
<∑
8=1


8H8 +
<∑
8=1


8

with some of the KKT conditions

w =

<∑
8=1


8H8x8 (37)

<∑
8=1


8H8 = 0, (38)

we have ...
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Dual Problem

! =
1
2 ‖

<∑
8=1


8H8x8 ‖22 −
<∑
8=1

<∑
9=1


8
 9H8H 9 〈x8 , x 9〉

− 1
<∑
8=1


8H8︸     ︷︷     ︸
=0

+
<∑
8=1


8
(39)

Given ‖∑<
8=1 
8H8x8 ‖22 =

∑<
8=1

∑<
9=1 
8
 9H8H 9 〈x8 , x 9〉, we have

! = −1
2

<∑
8=1

<∑
9=1


8
 9H8H 9 〈x8 , x 9〉 +
<∑
8=1


8 (40)
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Dual Problem (II)

The dual optimization problem for SVMs of the separable cases is

max
"

<∑
8=1


8 −
1
2

<∑
8 , 9=1


8
 9H8H 9 〈x8 , x 9〉 (41)

s.t. 
8 ≥ 0 (42)
<∑
8=1


8H8 = 0 ∀8 ∈ [<] (43)

I Lagrange multiplier " is also called dual variable
I This is an optimization problem only about "

I The dual problem is defined on the inner product 〈x8 , x 9〉
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Primal and Dual Problem

I Primal problem

min
(w ,1)

1
2 ‖w‖

2
2

s.t. H8(〈w , x8〉 + 1) ≥ 1, ∀8 ∈ [<]
(44)

I Dual problem

max
"

<∑
8=1


8 −
1
2

<∑
8 , 9=1


8
 9H8H 9 〈x8 , x 9〉

s.t.
<∑
8=1


8H8 = 0 and 
8 ≥ 0 ∀8 ∈ [<]
(45)

I These two problems are equivalent

[Boyd and Vandenberghe, 2004, Chapter 5]
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SVM Hypothesis, revisited

Once we solve the dual problem with ", we have the solution of w as

w =

<∑
8=1


8H8x8 (46)

and the hypothesis ℎ(x) as

ℎ(x) = sign(〈w , x〉 + 1) (47)

= sign(〈
<∑
8=1


8H8x8 , x〉 + 1) (48)

= sign(
<∑
8=1


8H8 〈x8 , x〉 + 1)

(49)

I In addition, we also have 1 = H8 −
∑<
8=1 
8H8 〈x8 , x〉 for any x8 with


8 > 0
I Therefore, everything can be represented in the form of dot

product

35
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Kernel Methods



Properties of Inner Product

In the solution of SVMs

ℎ(x) = sign(
<∑
8=1


8H8 〈x8 , x〉 + 1)

1 = H8 −
<∑
8=1


8H8 〈x8 , x〉
(50)

Extend the capacity of SVMs by replacing the inner product 〈x8 , x〉
with a kernel function

 (x8 , x) = 〈Φ(x8),Φ(x)〉 (51)

where Φ(·) is a nonlinear mapping function.
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SVMs with Kernel Functions

I Problem definition

max
"

<∑
8=1


8 −
1
2

<∑
8 , 9=1


8
 9H8H 9 (x8 , x 9)

s.t. 
8 ≥ 0 and
<∑
8=1


8H8 = 0, 8 ∈ [<]
(52)

I Solution: separable case

ℎ(x) = sign

(
<∑
8=1


8H8 (x8 , x) + 1
)

(53)

with 1 = H8 −
∑<
9=1 
 9H 9 (x 9 , x8) for any x8 with 
8 > 0
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Examples: Polynomial Kernels

For any constant � > 0, 2 ≥ 0, a polynomial kernel of degree 3 ∈ ℕ is
the kernel  defined over ℝ= by

 (x , x′) = (�〈x , x′〉 + 2)3 ,∀x , x′ ∈ ℝ= (54)

Special cases

I 3 = 1:  (x , x′) = �〈x , x′〉 + 2
I 3 = 2:  (x , x′) = (�〈x , x′〉 + 2)2
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Examples: Polynomial Kernels (II)

For the special case with 3 = 2, assume x , x′ ∈ ℝ2 (let � = 1 for
simplicity)

 (x , x′) = (〈x , x′〉 + 2)2 (55)

= (G1G
′
1 + G2G

′
2 + 2)

2 (56)

= G2
1G
′2
1 + G1G2G

′
1G
′
2 + 2G1G

′
1 + G1G2G

′
1G
′
2

+G2
2G
′2
2 + 2G2G

′
2 + 2G1G

′
1 + 2G2G

′
2 + 2

2 (57)

= G2
1G
′2
1 + G2

2G
′2
2 + 2G1G

′
1G2G

′
2 (58)

+22G1G
′
1 + 22G2G

′
2 + 22 (59)

= [G2
1 , G

2
2 ,
√

2G1G2 ,
√

22G1 ,
√

22G2 , 2]



G′21
G′22√

2G′1G′2√
22G′1√
22G′2
2


Exercise: Find out the Φ(x) function in  (x , x′) = (〈x , x′〉 + 2)3
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Examples: Polynomial Kernels (III)

Let  (x , x′) = 〈Φ(x),Φ(x′)〉, then

Φ(x) = [G2
1 , G

2
2 ,
√

2G1G2 ,
√

22G1 ,
√

22G2 , 2]T (60)

which maps a 2-D data point x into a 6-D space as Φ(x)

Recall the
XOR problem

Try the online demo

41
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Gaussian Kernels

For any constant � > 0, a Gaussian kernel or radial basis function
(RBF) is the kernel  defined over ℝ3 by

 (x , x′) = exp
(
−�‖x′ − x‖22

)
(61)

G1

G2

I What Φ(x) looks like in this case?
I What the effect of �? (demo)

42
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The Choice of Kernels

I The choice of  (x , x′) can be arbitrary, as long as the existence of
Φ(·) is guaranteed
I For many cases, Φ(·) cannot be found explicitly

I Alternatively, we only need to make sure  (x , x′) is positive
definite symmetric (PDS)
I A kernel  is PDS if for any {x1 , . . . , x<} the matrix K is symmetric

positive semi-definite

K = [ (x8 , x 9)]8 , 9 ∈ ℝ<×< (62)

I A symmetric positive semi-definite matrix is defined as

cTKc ≥ 0 (63)

[Mohri et al., 2018, Section 6.1 - 6.2]
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