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Overview

1. The Bias-Complexity Tradeoff

2. The Bias-Variance Tradeoff

3. The VC Dimension

Readings: [Shalev-Shwartz and Ben-David, 2014, Chapter 5 & 6]
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Quiz

For a real-world machine learning problem, which of the following
items are usually available to us?

I Training set ( = {(x1 , H1), . . . , (x< , H<)}
I Domain set X
I Label set Y
I Labeling function (the oracle) 5
I Distribution D over X× Y

I The Bayes predictor 5D(x)
I The size of the hypothesis space H

I The empirical risk of a hypothesis ℎ(x) ∈ H, !((ℎ(x))
I The true risk of a hypothesis ℎ(x) ∈ H, !D(ℎ(x))
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Agnostic PAC Learnability

A hypothesis class H is agnostic PAC learnable if there exist a
function <H : (0, 1)2 → ℕ and a learning algorithm with the
following property:

I for every distribution D over X× {−1,+1} and
I for every &, � ∈ (0, 1),

when running the learning algorithm on < ≥ <H(&, �) i.i.d. examples
generated by D, the algorithm returns a hypothesis ℎ( 1 such that,
with probability of at least 1 − �,

!D(ℎ() ≤ min
ℎ′∈H

!D(ℎ′) + & (1)

This explains the relation between the hypothesis learned with limited
data (ℎ() and the best hypothesis in the space (argminℎ′∈H!D(ℎ′)).

1Sometimes, as ℎ((x) or ℎ(x , () 3
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The Bayes Optimal Predictor

I The Bayes optimal predictor: given a probability distribution D

over X× {−1,+1}, the predictor is defined as

5D(G) =
{
+1 if ℙ[H = 1|G] ≥ 1

2
−1 otherwise

(2)

I No other predictor can do better: for any predictor ℎ

!D( 5D) ≤ !D(ℎ) (3)

I Question: for a given hypothesis space H, does the following
relation hold?

5D ∈ argmin
ℎ′∈H

!D(ℎ′)

I Answer: it depends the selection of the hypothesis space H,
usually not.

I Example: if 5D is a nonlinear classifier, while we choose to use
logistic regression.
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The Gap between ℎ( and 5D

For illustration purpose, let us assume the gap between ℎ( and 5D can
be visualized in the following plot

F1

F2

ℎ(

5D

&

I ℎ( = argminℎ′∈H!((ℎ′): learned by minimizing the empirical risk

I Constrained by the selection of H
I 5D: the optimal predictor if we know the data distribution D

I Not constrained by the selection of H
5



Outline

The previous example implies the error gap between ℎ( and 5D can
be decomposed into two components

F1

F2

ℎ(

5D

&

Two different perspectives of the decomposition

I The bias-complexity tradeoff: from the perspective of learning
theory

I The bias-variance tradeoff: from the perspective of statistical
estimation
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The Bias-Complexity Tradeoff



Basic Learning Procedure

The basic component of formulating a learning process

I Input/output space X× Y

I A collection of training examples ( = {(x8 , H8)}<8=1
I Hypothesis space H

I Learning via empirical risk minimization

ℎ( ∈ argmin
ℎ′∈H

!((ℎ′) =
1
<
|{ℎ′(x8) ≠ H8}| (4)

I Analyzing the true error of ℎ(

!D(ℎ() = E[ℎ((G) ≠ 5 (G)] (5)
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Example

Consider the binary classification problem with the data sampled
from the following distribution

D=
1
2B(G; 5, 1) + 1

2B(G; 1, 2) (6)

9



Example (Cont.)

Given the distribution, we can compute the true risk/error of the
Bayes predictor 5D as

!D( 5D) =
1
2B(G < 1Bayes; 5, 1) +

1
2 (1 −B(G < 1Bayes; 1, 2))

= 0.11799 (7)
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Example (Cont.)

The hypothesis space H is defined as

ℎ8(G) =
{
+1 G > 8

#

−1 G < 8
#

(8)

where # ∈ ℕ is a predefined integer

I The value of # is the size of the hypothesis space
I The best hypothesis in H

ℎ∗ ∈ argmin
ℎ′∈H

!D(ℎ′) (9)

I Very likely the best predictor in H is not the Bayes predictor,
unless 1Bayes ∈ { 8# : 8 ∈ [#]}
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Error Decomposition

The error gap between ℎ( and 5D can be decomposed as two parts

!D(ℎ() − !D( 5D) = &app + &est (10)

F1

F2

ℎ(

5D

ℎ∗

&app

&est

I Approximation error &app caused by selecting a specific
hypothesis space H (model bias)

I Estimation error &est caused by selecting ℎ( with a specific
training set (model complexity)
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Approximation Error &app

To reduce the approximation error &app, we could increase the size of
the hypothesis space

F1

F2

ℎ(

5D

ℎ∗

&app

&est

ℎ∗

The cost is that we also increase the size of training set, in order to
maintain the overall error in the same level (recall the sample
complexity of finite hypothesis spaces).
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Estimation Error &est

On the other hand, if we use the same training set (, then we may
have a larger estimation error

F1

F2

ℎ(

5D

ℎ∗

ℎ∗

ℎ(

The bias-complexity tradeoff: find the right balance to reduce both
approximation error and estimation error.
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Example: 200 training examples

We randomly sampled 100 examples from each class

D=
1
2B(G; 5, 1) + 1

2B(G; 1, 2) (11)
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Example: 200 training examples

Given 200 training examples, the errors with respect to different
hypothesis space is the following (G axis is the size of H)

There is a tradeoff with respect to the size of H
16



Example: 2000 training examples

We randomly sampled 1000 examples from each class

D=
1
2B(G; 5, 1) + 1

2B(G; 1, 2) (12)

17



Example: 2000 training examples

With these 2000 training examples, the errors with respect to different
hypothesis space is the following

Both errors are smaller, but the tradeoff still exists
18



Summary

Three components in this decomposition

I ℎ( ∈ argminℎ′∈H!((ℎ′): the ERM predictor given the training set
(

I ℎ∗ ∈ argminℎ′∈H!D(ℎ′): the optimal predictor from H

I 5D: the Bayes predictor given D

Balancing strategy:

I we can incrase the complexity of hypothesis space to reduce the
bias, e.g.,
I enlarge the hypothesis space (as in the running example)
I replacing linear predictors with nonlinear predictors

I in the meantime, we have to increase the training size to reduce
the approximation error.
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The Bias-Variance Tradeoff



A New Perspective

Let us analyze the error & without the assumption of

I knowing the best predictor from H, ℎ∗ ∈ argminℎ′∈H!D(ℎ′)
I changing the size of (

F1

F2

ℎ(

5D

&

We still need (1) the ERM predictor ℎ( and (2) the Bayes predictor 5D
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A New Way of Decomposition

I Consider the randomness in ( with < training examples

I In this case, ( is a random variable, ℎ(x , () is a function of ( and x
I The average prediction function given by � [ℎ(x , ()]where
( ∼ D<

I Overall, � [ℎ(x , ()]will give good performance on any possible
dataset with size <
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Data Generation Model

Consider the following data generation model

I - ∼ *[0, 1] uniform distribution
I . = N(- + sin(2-), �2)with �2 = 0.1

An example of ( is

23



Hypothesis Spaces

Given ( and the following hypothesis space H1

H1 = {F0 + F1G : F0 , F1 ∈ ℝ} (13)

the regression result

24



Hypothesis Spaces (Cont.)

Given ( and the following hypothesis space H3

H3 = {F0 + F1G + F2G
2 + F3G

3 : F0 , F1 , F2 , F3 ∈ ℝ} (14)

the regression result
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Hypothesis Spaces (Cont.)

Given ( and the following hypothesis space H15

H15 = {F0 + F1G + · · · + F15G
15 : F0 , F1 , · · · , F15 ∈ ℝ} (15)

I Intuitively, the degree of the polynomials indicates the
potential/complexity of the hypothesis space

I Refer to the VC dimension section for more discussion

26
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Error Decomposition

The difference between the best hypothesis ℎ(x , () and the Bayes
predictor 5D(x) is measured as

&2 = {ℎ(x , () − 5D(x)}2 (16)

Introduce � [ℎ(x , ()] into the calculation, we have

&2 = {ℎ(x , () − � [ℎ(x , ()] + � [ℎ(x , ()] − 5D(x)}2

= {ℎ(x , () − � [ℎ(x , ()]}2 + {� [ℎ(x , ()] − 5D(x)}2

+2{ℎ(x , () − � [ℎ(x , ()]} · {� [ℎ(x , ()] − 5D(x)}
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Review: Mean

Given a random variable - and its probability density function ?(G)

I Mean: � [-] =
∫
G?(G)3G

I Example: the mean of a Gaussian distribution N(G;�, �2)

� [-] = � (17)

I Approximation to the mean with samples {G1 , . . . , G<}

� [-] ≈ 1
<

<∑
8=1

G8 (18)

I Property: � [
-] = 
� [-] for 
 is determinstic

28
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Review: Variance

Given a random variable -, its probability density function ?(G), and
its mean � [-]

I Variance: Var(-) = �
[
(- − � [-])2

]
I Example: the variance of a Gaussian distribution N(G;�, �2)

Var(-) = �2 (19)

I Relation between Var(-) and � [-]

Var(-) = �
[
(- − � [-])2

]
= �

[
-2 − 2-� [-] + � [-]2

]
= �

[
-2] − 2� [-]� [-] + � [-]2

= �
[
-2] − � [-]2

29
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Error Decomposition (Cont.)

Recall

&2 = {ℎ(x , () − � [ℎ(x , ()] + � [ℎ(x , ()] − 5D(x)}2

= {ℎ(x , () − � [ℎ(x , ()]}2 + {� [ℎ(x , ()] − 5D(x)}2

+2{ℎ(x , () − � [ℎ(x , ()]} · {� [ℎ(x , ()] − 5D(x)}

Taking the expectation of &2

�
[
&2

]
= �

[
{ℎ(x , () − � [ℎ(x , ()]}2

]
+ {� [ℎ(x , ()] − 5D(x)}2

+2� [{ℎ(x , () − � [ℎ(x , ()]}] · {� [ℎ(x , ()] − 5D(x)}

= �
[
{ℎ(x , () − � [ℎ(x , ()]}2

]
+ {� [ℎ(x , ()] − 5D(x)}2

+2{� [ℎ(x , ()] − � [ℎ(x , ()]} · {� [ℎ(x , ()] − 5D(x)}

= �
[
{ℎ(x , () − � [ℎ(x , ()]}2

]
+ {� [ℎ(x , ()] − 5D(x)}2

30
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The Bias-Variance Decomposition

The expected error is decomposed as

�
[
&2] = � [

{ℎ(x , () − � [ℎ(x , ()]}2
]︸                             ︷︷                             ︸

variance

+ {� [ℎ(x , ()] − 5D(x)}2︸                      ︷︷                      ︸
bias2

I bias: how far the expected prediction � [ℎ(x , ()] diverges from
the optimal predictor 5D(x)

I variance: how a hypothesis learned from a specific ( diverges
from the average prediction � [ℎ(x , ()]
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Computing � [ℎ(x , ()]

The key of computing � [ℎ(x , ()] is to eliminate the randomness
introduced by (
1: for : = 1, · · · ,  do
2: Sample a traing set (: with size < from the data generation

model
3: Find the best hypothesis via ℎ(x , (:) ∈ argminℎ′ !(ℎ′, (:)
4: end for
5: Output:

� [ℎ(x , ()] ≈ 1
 

 ∑
:=1

ℎ(x , (:)

The larger  , the better approximation
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Example: Bias and Variance

With  = 50, < = 100, and H1, we can visualize the bias and variance
of a linear regression example as following

High bias and low variance (Underfitting)
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Example: Bias and Variance (Cont.)

Same training set with H3

Both bias and variance are fine
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Example: Bias and Variance (Cont.)

Same training set with H15

Low bias and high variance (Overfitting)

Exercise: The bias-variance tradeoff on linear regression with ℓ2
regularization
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The Bias-Variance Tradeoff

I bias: how far the expected prediction � [ℎ(x , ()] diverges from
the optimal predictor 5D(x)
I Error of this part is caused by the selection of a hypothesis space

I variance: how a hypothesis learned from a specific ( diverges
from the average prediction � [ℎ(x , ()]
I Error of this part is caused by using a particular data set (
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The VC Dimension



Learnability with Infinite Hypotheses

Infinite-size hypothesis space is learnable

Examples

I Half-space predictor
I Logistic regression predictor
I Many others
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Shattering

For a given set ( and a hypothesis space H,

I A dichotomy of the set ( is one of the possible ways of labeling
the points in ( using a hypothesis ℎ ∈ H

I A set ( of < ≥ 1 points is said to be shattered by a hypothesis
space H, if all possible dichotomies of ( can be realized by H

[Mohri et al., 2018, Page 36]
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Shattering: Example

Consider the following set ( and the half-space hypothesis space

Hhalf = {F0 + F1G1 + F2G2 = 0 : F0 , F1 , F2 ∈ ℝ} (20)

and the following specific set (

G1

G2

There are 23 = 8 different ways to label the points and Hhalf can
realized all of them.
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VC Dimension

The VC-dimension of a hypothesis space H, denoted VCdim(H), is
the maximal size of a set ( ⊂ X that can be shattered by H.

A: How to find the VC-dimension of a given hypothesis space?
Q: The proof consists of two parts:

I There exists a set ( of size 3 that is shattered by H

I Every set ( of size 3 + 1 is not shattered by H

[Shalev-Shwartz and Ben-David, 2014, Page 70]
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Half Spaces

Consider a special case as following, where VC-dim(Hhalf) = 3

Hhalf = {F0 + F1G1 + F2G2 = 0 : F0 , F1 , F2 ∈ ℝ} (21)

(1) Exist a case

G1

G2

(2) For any case

G1

G2
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Axis-aligned Rectangles

Let Hbe the class of axis-aligned rectangle, formally

H= {ℎ(01 ,02 ,11 ,12) : 01 ≤ 02 and 11 ≤ 12} (22)

where

ℎ(01 ,02 ,11 ,12)(G1 , G2) =
{
+1 G1 ∈ [01 , 02]and G2 ∈ [11 , 12]
−1 otherwise

VC-dim(Hrect) = 4
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VC Dimension and the Number of Parameters

I For linear predictors, the VC dimensions are equal to the
numbers of parameters

Hhalf = {F0 + F1G1 + F2G2 = 0 : F0 , F1 , F2 ∈ ℝ} (23)

G1

G2

I However, the number of parameters is not always a good indictor
for the VC dimension. Considering the following hypothesis
space
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Sine Functions

The hypothesis space of sine functions is defined as

Hsin = {sin(
 · G) : 
 ∈ ℝ} (24)
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VC-dim(Hsin) = ∞
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