
CS 6316 Machine Learning
Linear Predictors

Yangfeng Ji

Information and Language Processing Lab

Department of Computer Science

University of Virginia

Overview

1. Review: Linear Functions

2. Perceptron

3. Logistic Regression

4. Linear Regression

5. ℓ2 Regularization and Overfitting

6. Summary

1

Review: Linear Functions

Linear Predictors

Linear predictors discussed in this course

I halfspace predictors

I logistic regression classifiers

I linear SVMs (lecture on support vector machines)

I naive Bayes classifiers (lecture on generative models)

I linear regression predictors

A common core form of these linear predictors

ℎw ,1 = 〈w , x〉 + 1 =
(3∑
8=1

F8G8
)
+ 1 (1)

where w is the weights and 1 is the bias

3

Linear Predictors

Linear predictors discussed in this course

I halfspace predictors

I logistic regression classifiers

I linear SVMs (lecture on support vector machines)

I naive Bayes classifiers (lecture on generative models)

I linear regression predictors

A common core form of these linear predictors

ℎw ,1 = 〈w , x〉 + 1 =
(3∑
8=1

F8G8
)
+ 1 (1)

where w is the weights and 1 is the bias

3

Alternative Form

Given the original definition of a linear function

ℎw ,1 = 〈w , x〉 + 1 =
(3∑
8=1

F8G8
)
+ 1, (2)

we could redefine it in a more compact form

w ← (F1 , F2 , . . . , F3 , 1)T

x ← (G1 , G2 , . . . , G3 , 1)T

and then

ℎw ,1(x) = 〈w , x〉 (3)

4

Linear Functions

Consider a two-dimensional case with w = (1, 1,−0.5)

5 (x) = wTx = G1 + G2 − 0.5 (4)

G1

G2

Different values of 5 (x)map to different areas on this 2-D space. For

example, the following equation defines the blue line !.

5 (x) = wTx = 0 (5)

5

Properties of Linear Functions (II)

For any two points x and x′ lying in the line

5 (x) − 5 (x′) = wTx −wTx′ = 0 (6)

G1

G2

x

x′

[Friedman et al., 2001, Section 4.5]

6

Properties of Linear Functions (III)

Furthermore,

5 (x) = G1 + G2 − 0.5 = 0 (7)

separates the 2-D space ℝ2
into two half spaces

G1

G2

5 (x) > 0

5 (x) < 0

7

Properties of Linear Functions (IV)

From the perspective of linear projection, 5 (x) = 0 defines the vectors

on this 2-D space, whose projections onto the direction (1, 1) have the
same magnitude 0.5

G1 + G2 − 0.5 = 0⇒ (G1 , G2) ·
(

1

1

)
= 0.5 (8)

G1

G2

x (1, 1)

This idea can be generalized to

compute the distance between a

point and a line.

[Friedman et al., 2001, Section 4.5]

8

Properties of Linear Functions (IV)

From the perspective of linear projection, 5 (x) = 0 defines the vectors

on this 2-D space, whose projections onto the direction (1, 1) have the
same magnitude 0.5

G1 + G2 − 0.5 = 0⇒ (G1 , G2) ·
(

1

1

)
= 0.5 (8)

G1

G2

x (1, 1)
This idea can be generalized to

compute the distance between a

point and a line.

[Friedman et al., 2001, Section 4.5]

8

Properties of Linear Functions (IV)

The distance of point x to line ! : 5 (x) = 〈w , x〉 = 0 is given by

5 (x)
‖w‖2

=
〈w , x〉
‖x‖2

= 〈 w
‖w‖2

, x〉 (9)

G1

G2

x

[Friedman et al., 2001, Section 4.5]

9

Perceptron

Halfspace Hypothesis Class

I X= ℝ3

I Y= {−1,+1}
I Halfspace hypothesis class

Hhalf = {sign(〈w , x〉) : w ∈ ℝ3} (10)

which is an infinite hypothesis space.

The sign function H = sign(G) is defined as

11

Linearly Separable Cases

The algorithm can find a hyperplane to separate all positive examples

from negative examples

G1

G2

The definition of linearly separable cases is with respect to the

training set (instead of D

12

Prediction Rule

The prediction rule of a half-space predictor is based on the sign of

ℎ(x) = sign(〈w , x〉)

ℎ(x) =
{
+1 〈w , x〉 > 0

−1 〈w , x〉 < 0

(11)

or,

ℎ(x) = H′ if H′ ∈ {−1,+1} and H′〈w , x〉 > 0 (12)

G1

G2

〈w , x〉 > 0

〈w , x〉 < 0

G1

G2

+

−

13

Prediction Rule

The prediction rule of a half-space predictor is based on the sign of

ℎ(x) = sign(〈w , x〉)

ℎ(x) =
{
+1 〈w , x〉 > 0

−1 〈w , x〉 < 0

(11)

or,

ℎ(x) = H′ if H′ ∈ {−1,+1} and H′〈w , x〉 > 0 (12)

G1

G2

〈w , x〉 > 0

〈w , x〉 < 0

G1

G2

+

−

13

Perceptron Algorithm

The perceptron algorithm is defined as

1: Input: (= {(x1 , H1), . . . , (x< , H<))}
2: Initialize w(0) = (0, . . . , 0)

3: for C = 1, 2, · · · ,) do
4: 8 ← C mod <

5: if H8 〈w(C) , x8〉 ≤ 0 then
6: w(C+1) ← w(C) + H8x8 // updating rule
7: end if
8: end for

9: Output: w())

Exercise: Implementing this algorithm with a simple example

14

Perceptron Algorithm

The perceptron algorithm is defined as

1: Input: (= {(x1 , H1), . . . , (x< , H<))}
2: Initialize w(0) = (0, . . . , 0)
3: for C = 1, 2, · · · ,) do
4: 8 ← C mod <

5: if H8 〈w(C) , x8〉 ≤ 0 then
6: w(C+1) ← w(C) + H8x8 // updating rule
7: end if

8: end for
9: Output: w())

Exercise: Implementing this algorithm with a simple example

14

Perceptron Algorithm

The perceptron algorithm is defined as

1: Input: (= {(x1 , H1), . . . , (x< , H<))}
2: Initialize w(0) = (0, . . . , 0)
3: for C = 1, 2, · · · ,) do
4: 8 ← C mod <

5: if H8 〈w(C) , x8〉 ≤ 0 then
6: w(C+1) ← w(C) + H8x8 // updating rule
7: end if
8: end for
9: Output: w())

Exercise: Implementing this algorithm with a simple example

14

Perceptron Algorithm

The perceptron algorithm is defined as

1: Input: (= {(x1 , H1), . . . , (x< , H<))}
2: Initialize w(0) = (0, . . . , 0)
3: for C = 1, 2, · · · ,) do
4: 8 ← C mod <

5: if H8 〈w(C) , x8〉 ≤ 0 then
6: w(C+1) ← w(C) + H8x8 // updating rule
7: end if
8: end for
9: Output: w())

Exercise: Implementing this algorithm with a simple example

14

Two Questions

The updating rule can be break down into two cases:

w(C+1) ← w(C) + H8x8 (13)

I For H8 = +1, w(C+1) ← w(C) + x8
I For H8 = −1, w(C+1) ← w(C) − x8

Two questions:

I How the updating rule can help?

I How many updating steps the algorithm needs?

15

Two Questions

The updating rule can be break down into two cases:

w(C+1) ← w(C) + H8x8 (13)

I For H8 = +1, w(C+1) ← w(C) + x8
I For H8 = −1, w(C+1) ← w(C) − x8

Two questions:

I How the updating rule can help?

I How many updating steps the algorithm needs?

15

The Updating Rule

At time step C, given the training example (x8 , H8) and the current

weight w(C)

H8 〈w(C+1) , x8〉 = H8 〈w(C) + H8x8 , x8〉 (14)

= H8 〈w(C) , x8〉 + ‖x8 ‖2 (15)

I w(C+1)
gives a higher value of H8 〈w(C+1) , x8〉 on predicting x8 than

w(C)

I the updating is affected by the norm of x8 , ‖x8 ‖2

16

Theorem

Assume that {(x8 , H8)}<8=1
is separable. Let

I � = min{‖w‖ : ∀8 ∈ [<], H8 〈w , x8〉 ≥ 1}, and
I ' = max8 ‖x8 ‖.

Then, the Perceptron algorithm stops after at most ('�)2 iterations,
and when it stops it holds that ∀8 ∈ [<],

H8 〈w(C) , x〉 > 0 (16)

I A realizable case with infinite hypothesis space

I Finish training in finite steps

17

Example

[Bishop, 2006, Page 195]

18

Example

[Bishop, 2006, Page 195]

18

Example

[Bishop, 2006, Page 195]

18

Example

[Bishop, 2006, Page 195]

18

The XOR Example: a Non-separable Case

I -1 , -2 ∈ {0, 1}
I the XOR operation is defined

as

. = -1 ⊕ -2

where

. =

{
1 -1 ≠ -2

0 -1 = -2

G1

G2

19

Logistic Regression

Hypothesis Class

I The hypothesis class of logistic regression is defined as

HLR = {�(〈w , x〉) : w ∈ ℝ3} (17)

I The sigmoid function �(0)with 0 ∈ ℝ

�(0) = 1

1 + exp(−0) (18)

21

Unified Form for Logistic Predictors

I An unified form for H ∈ {−1,+1}

ℎ(x , H) = 1

1 + exp(−H〈w , x〉) (19)

which is similar to the half-space predictors

I Prediction

1. Compute the the values from Eq. 19 with H ∈ {−1,+1}
2. Pick the H that has bigger value

H =

{
+1 ℎ(x ,+1) > ℎ(x ,−1)
−1 ℎ(x ,+1) < ℎ(x ,−1) (20)

22

Unified Form for Logistic Predictors

I An unified form for H ∈ {−1,+1}

ℎ(x , H) = 1

1 + exp(−H〈w , x〉) (19)

which is similar to the half-space predictors

I Prediction

1. Compute the the values from Eq. 19 with H ∈ {−1,+1}
2. Pick the H that has bigger value

H =

{
+1 ℎ(x ,+1) > ℎ(x ,−1)
−1 ℎ(x ,+1) < ℎ(x ,−1) (20)

22

A Predictor

Take a close look of the uniform definition of ℎ(x , H)

I When H = +1

ℎw(x ,+1) = 1

1 + exp(−〈w , x〉)

I When H = −1

ℎw(x ,−1) =
1

1 + exp(〈w , x〉)

=
exp(−〈w , x〉)

1 + exp(−〈w , x〉)

= 1 − 1

1 + exp(−〈w , x〉)
= 1 − ℎw(x ,+1)

23

A Linear Classifier?

To justify this is a linear classifier, let take a look the decision

boundary given by

ℎ(x ,+1) = ℎ(x ,−1) (21)

Specifically, we have

1

1 + exp(−〈w , x〉) =
1

1 + exp(〈w , x〉)
exp(−〈w , x〉) = exp(〈w , x〉)

−〈w , x〉 = 〈w , x〉
2〈w , x〉 = 0

The decision boundary is a straight line

24

Risk/Loss Function

For a given training example (x , H), the risk/loss function is defined

as the negative log of ℎ(x , H)

!(ℎw , (x , H)) = − log

1

1 + exp(−H〈w , x〉)
= log(1 + exp(−H〈w , x〉)) (22)

Intuitively, minimizing the risk will increase the value of ℎ(x , H)

25

ERM

The Empirical Risk Minimization (ERM) problem: given the

training set (= {(x1 , H1), . . . , (x< , H<)}, minimize the following

objective function with respect to w

!(ℎw , () =
1

<

<∑
8=1

log(1 + exp(−H8 〈w , x8〉)) (23)

I !(ℎw , () is convex function with respect to w

I Estimation of w: ŵ ← argminw′ !(ℎw′ , ()
I Minimization can be done with gradient-based optimization1

1more detail will be covered in the lecture of optimization methods

26

Gradient Descent

I The gradient of !(ℎw , ()with respect to w

3!(ℎw , ()
3w

=
1

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (−H8x8) (24)

I Gradient-based learning

w(new) = w(old) − � 3!(ℎw , ()
3w

= w(old) + �

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (H8x8)

where � is the updating step size.

I Exercise: prove Eq. 24

27

Gradient Descent

I The gradient of !(ℎw , ()with respect to w

3!(ℎw , ()
3w

=
1

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (−H8x8) (24)

I Gradient-based learning

w(new) = w(old) − � 3!(ℎw , ()
3w

= w(old) + �

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (H8x8)

where � is the updating step size.

I Exercise: prove Eq. 24

27

Gradient Descent

I The gradient of !(ℎw , ()with respect to w

3!(ℎw , ()
3w

=
1

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (−H8x8) (24)

I Gradient-based learning

w(new) = w(old) − � 3!(ℎw , ()
3w

= w(old) + �

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (H8x8)

where � is the updating step size.

I Exercise: prove Eq. 24

27

More Analysis on Gradient Descent

Gradient-based learning

w(new) = w(old) + �

<

<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)︸ ︷︷ ︸

(2)

· (H8x8)︸︷︷︸
(1)

(25)

For each (x8 , H8), the update is

(1) directed by the true label H8 , as in the Perceptron algorithm

(2) proportional to the prediction value of the opposite label (not

like the Perceptron algorithm)

28

Updating Rules

Consider the case where the learning algorithms only take one

training example at each time

I Logistic regression

w(new) = w(old) + � ·
exp(−H8 〈w , x8〉)

1 + exp(−H8 〈w , x8〉)
· (H8x8) (26)

I Perceptron algorithm

w(new) = w(old) + H8x8 (27)

only applies when the prediction is wrong

29

Updating Rules

Consider the case where the learning algorithms only take one

training example at each time

I Logistic regression

w(new) = w(old) + � ·
exp(−H8 〈w , x8〉)

1 + exp(−H8 〈w , x8〉)
· (H8x8) (26)

I Perceptron algorithm

w(new) = w(old) + H8x8 (27)

only applies when the prediction is wrong

29

A Probabilistic View of Logistic Regression

I From a probabilistic view, logistic regression defines the

probability of a possible label H given the input x

?w(. = H | x) = ℎ(x , H) = 1

1 + exp(−H〈w , x〉) (28)

where . is a random variable with . ∈ {−1,+1}

I The previous prediction rule is equivalent to

Ĥ =

{
+1 if ?(. = +1 | x) > ?(. = −1 | x)
−1 if ?(. = +1 | x) < ?(. = −1 | x) (29)

30

A Probabilistic View of Logistic Regression

I From a probabilistic view, logistic regression defines the

probability of a possible label H given the input x

?w(. = H | x) = ℎ(x , H) = 1

1 + exp(−H〈w , x〉) (28)

where . is a random variable with . ∈ {−1,+1}
I The previous prediction rule is equivalent to

Ĥ =

{
+1 if ?(. = +1 | x) > ?(. = −1 | x)
−1 if ?(. = +1 | x) < ?(. = −1 | x) (29)

30

Parameter Estimation: Likelihood Function

Given the training set (= {(x1 , H1), . . . , (x< , H<)}, the likelihood
function is defined as

Lik(x) =
<∏
8=1

?w(H8 | x8) (30)

Likelihood Principle: All the information aboutw is contained in the

likelihood function for w given (.

[Berger and Wolpert, 1988]

31

Parameter Estimation: Likelihood Function

Given the training set (= {(x1 , H1), . . . , (x< , H<)}, the likelihood
function is defined as

Lik(x) =
<∏
8=1

?w(H8 | x8) (30)

Likelihood Principle: All the information aboutw is contained in the

likelihood function for w given (.

[Berger and Wolpert, 1988]

31

Parameter Estimation: Maximum Likelihood

Given the training set (,

I Log-likelihood function

ℓ (w) =

<∑
8=1

log ?w(H8 | x8)

=

<∑
8=1

log

1

1 + exp(−H8 〈w , x8〉)

= −
<∑
8=1

log(1 + exp(−H8 〈w , x8〉)) (31)

I Maximize the log-likelihood function

argmax wℓ (w) = argmin w − ℓ (w) = argmin w!(ℎw , ()

learning with ERM is equivalent to the Maximum Likelihood

Estimation (MLE) in Statistics

32

Parameter Estimation: Maximum Likelihood

Given the training set (,

I Log-likelihood function

ℓ (w) =

<∑
8=1

log ?w(H8 | x8)

=

<∑
8=1

log

1

1 + exp(−H8 〈w , x8〉)

= −
<∑
8=1

log(1 + exp(−H8 〈w , x8〉)) (31)

I Maximize the log-likelihood function

argmax wℓ (w) = argmin w − ℓ (w) = argmin w!(ℎw , ()

learning with ERM is equivalent to the Maximum Likelihood

Estimation (MLE) in Statistics

32

Gradient Descent, revisited

Recall the gradient-based learning on the previous slide

w(new) = w(old) + �
<∑
8=1

exp(−H8 〈w , x8〉)
1 + exp(−H8 〈w , x8〉)

· (H8x8)

= w(old) + �
<∑
8=1

(1 − ?(H8 | x8)) · H8x8 (32)

I If ?(H8 | x8) → 0, wrong prediction, maximal update

I If ?(H8 | x8) → 1, correct prediction, minimal update

33

Linear Regression

Hypothesis Class

I The hypothesis class of linear regression predictors is defined as

Hreg = {〈w , x〉 : w ∈ ℝ3} (33)

I One example hypothesis ℎ ∈ Hreg

ℎ(x) = 〈w , x〉 (34)

35

Problem Statement

Given the training set (, in this case, {(x1 , H1), . . . , (x5 , H5)}, find
ℎ ∈ Hreg such that ℎ(x) gives the best (linear) relation between G and H

G

H

36

Loss Function

I Loss function

!(ℎ, (x , H)) = (ℎ(x) − H)2 = (wTx − H)2 (35)

I Given the training set (, the corresponding empirical risk

function of linear regression is defined as

!(ℎ, () = 1

<

<∑
8=1

(ℎ(x8) − H8)2 (36)

which is called Mean Squared Error (MSE).

37

Loss Function

I Loss function

!(ℎ, (x , H)) = (ℎ(x) − H)2 = (wTx − H)2 (35)

I Given the training set (, the corresponding empirical risk

function of linear regression is defined as

!(ℎ, () = 1

<

<∑
8=1

(ℎ(x8) − H8)2 (36)

which is called Mean Squared Error (MSE).

37

Visualization

For a 1-D case, the loss function

!(ℎ, () = 1

<

<∑
8=1

(ℎ(x8) − H8)2 (37)

can be visualized as

G

H

38

Empirical Risk Minimization

I The ERM problem

argmin

w
!((ℎw) = argmin

w

1

<

<∑
8=1

(〈w , x8〉 − H8)2 (38)

I Compute the gradient and set it to be zero

2

<

<∑
8=1

(〈w , x8〉 − H8)x8 = 0

<∑
8=1

〈w , x8〉x8 = H8x8

39

Empirical Risk Minimization (II)

To isolate w for solution, we have

I 〈w , x8〉x8 = (wTx8)x8 = (x8xT8)w

<∑
8=1

(x8xT8)w =

<∑
8=1

H8x8 (39)

I then, rewrite it as

Aw = b (40)

with

A =

<∑
8=1

x8xT8 b =

<∑
8=1

H8x8 (41)

40

Review: Symmetric Matrices

A symmetric matrix A ∈ ℝ=×=
is defined as

AT = A (42)

or, in other words,

08 , 9 = 0 9 ,8 ∀8 , 9 ∈ [=] (43)

Comments

I The identity matrix I is symmetric

I A diagonal matrix is symmetric

41

Review: Eigen Decomposition

Every symmetric matrix A can be decomposed as

A = UΛUT
(44)

with

I Λ =


�1

. . .

�=

 as a diagonal matrix

I U = [u1 , . . . , u=] is an orthogonal matrix

〈u8 , u8〉 = ‖u‖2
2
= 1 and 〈u8 , u9〉 = 0

42

Inverse

The inverse of a square matrix A ∈ ℝ=×=
is denoted as A−1

, which is

the unique matrix such that

A−1A = I = AA−1

(45)

I Not all matrices are invertible

I Non-square matrices do not have inverses (by definition)

I Not all square matrices are invertible

I Not all symmetric matrices are invertible

43

Solution

I If A is invertible, the solution of the ERM problem is

w = A−1b (46)

I If A is not invertible, consider the eigen decomposition of

A = UDUT
, and compute the generalized inverse A+ = UD+UT

,

then

ŵ = A+b (47)

with D = diag(31 , . . . , 38 , 0, . . . , 0), D+ is defined as

D+ = diag(1

31

, . . . ,
1

38
, 0, . . . , 0) (48)

44

Solution

I If A is invertible, the solution of the ERM problem is

w = A−1b (46)

I If A is not invertible, consider the eigen decomposition of

A = UDUT
, and compute the generalized inverse A+ = UD+UT

,

then

ŵ = A+b (47)

with D = diag(31 , . . . , 38 , 0, . . . , 0), D+ is defined as

D+ = diag(1

31

, . . . ,
1

38
, 0, . . . , 0) (48)

44

Verification of Generalized Inverse

D =



31

. . .

38
0

. . .

0


D+ =



1

3
1

. . .
1

38
0

. . .

0


I A = UDUT

I A+ = UD+UT

AA+ =



1

. . .

1

0

. . .

0


(49)

45

ℓ2 Regularization

I Another common way of addressing the non-invertible issue is to

add a constraint on w as

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (50)

where � is the regularization parameter

I Gradient of the new !((ℎw) as

3!(,ℓ2(ℎw)
3w

=
2

<

<∑
8=1

(〈w , x8〉 − H8)x8 + 2�w (51)

46

ℓ2 Regularization

I Solution: with the notations A and 1 defined in Eq. (41)

w = (A + �I)−11 (52)

I A + �I is invertible, when 38 + � ≠ 0, ∀8

A + �I = UDUT + �I = U(D + �I)UT
(53)

I Regularization will be further discussed in the next lecture on

model selection

I Exercise: Prove Eq. (52)

47

ℓ2 Regularization

I Solution: with the notations A and 1 defined in Eq. (41)

w = (A + �I)−11 (52)

I A + �I is invertible, when 38 + � ≠ 0, ∀8

A + �I = UDUT + �I = U(D + �I)UT
(53)

I Regularization will be further discussed in the next lecture on

model selection

I Exercise: Prove Eq. (52)

47

ℓ2 Regularization

I Solution: with the notations A and 1 defined in Eq. (41)

w = (A + �I)−11 (52)

I A + �I is invertible, when 38 + � ≠ 0, ∀8

A + �I = UDUT + �I = U(D + �I)UT
(53)

I Regularization will be further discussed in the next lecture on

model selection

I Exercise: Prove Eq. (52)

47

ℓ2 Regularization: Illustration

Consider a 2-D case, where x = (G1 , G2) and w = (F1 , F2)

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (54)

Visualization of both components with their contour plots

F1

F2

MSE

ℓ2 Regularization

Minimizing !(,ℓ2(ℎw) is to
find a tradeoff between

these two components

48

ℓ2 Regularization: Illustration

Consider a 2-D case, where x = (G1 , G2) and w = (F1 , F2)

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (54)

Visualization of both components with their contour plots

F1

F2

MSE

ℓ2 Regularization

Minimizing !(,ℓ2(ℎw) is to
find a tradeoff between

these two components

48

ℓ2 Regularization: Illustration

Consider a 2-D case, where x = (G1 , G2) and w = (F1 , F2)

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (54)

Visualization of both components with their contour plots

F1

F2

MSE

ℓ2 Regularization

Minimizing !(,ℓ2(ℎw) is to
find a tradeoff between

these two components

48

ℓ2 Regularization: Illustration

Consider a 2-D case, where x = (G1 , G2) and w = (F1 , F2)

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (54)

Visualization of both components with their contour plots

F1

F2

MSE

ℓ2 Regularization

Minimizing !(,ℓ2(ℎw) is to
find a tradeoff between

these two components

48

Gaussian Distribution

A random variable - ∈ ℝ is said to follow a normal (or Gaussian)

distribution N(�, �2) if its probability density function is given by

5 (G) = 1√
2��2

exp

(
−
(G − �)2

2�2

)
(55)

I �: mean

I �2
: variance

I Probability of - ∈ [0, 1]: %(0 ≤ - ≤ 1) =
∫ 1

0
5 (G)3G

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

49

Gaussian Distribution (II)

5 (G) = 1√
2��2

exp

(
− (G − �)

2

2�2

)
(56)

There examples of Gaussian distributions

−6 −4 −2 0 2 4 6 8

0

0.1

0.2

0.3

0.4

I Blue: N(0, 1) (standard normal distribution)

I Red: N(0, 2)
I Green: N(1, 1)

50

A Probabilistic View of Linear Regression

Consider the loss function !(,ℓ2(ℎw) defined in equation 50,

exp(−!(,ℓ2(ℎw)) = exp

{
− 1

<

<∑
8=1

(ℎw(x8) − H8)2 − �‖w‖2
}

∝ exp

{
−

<∑
8=1

(ℎw(x8) − H8)2
}
· exp

{
− �‖w‖2

}
=

<∏
8=1

exp

{
− (ℎw(x8) − H8)2

}
· exp

{
− �‖w‖2

}
∝

<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
)

51

A Probabilistic View of Linear Regression

Consider the loss function !(,ℓ2(ℎw) defined in equation 50,

exp(−!(,ℓ2(ℎw)) = exp

{
− 1

<

<∑
8=1

(ℎw(x8) − H8)2 − �‖w‖2
}

∝ exp

{
−

<∑
8=1

(ℎw(x8) − H8)2
}
· exp

{
− �‖w‖2

}

=

<∏
8=1

exp

{
− (ℎw(x8) − H8)2

}
· exp

{
− �‖w‖2

}
∝

<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
)

51

A Probabilistic View of Linear Regression

Consider the loss function !(,ℓ2(ℎw) defined in equation 50,

exp(−!(,ℓ2(ℎw)) = exp

{
− 1

<

<∑
8=1

(ℎw(x8) − H8)2 − �‖w‖2
}

∝ exp

{
−

<∑
8=1

(ℎw(x8) − H8)2
}
· exp

{
− �‖w‖2

}
=

<∏
8=1

exp

{
− (ℎw(x8) − H8)2

}
· exp

{
− �‖w‖2

}

∝
<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
)

51

A Probabilistic View of Linear Regression

Consider the loss function !(,ℓ2(ℎw) defined in equation 50,

exp(−!(,ℓ2(ℎw)) = exp

{
− 1

<

<∑
8=1

(ℎw(x8) − H8)2 − �‖w‖2
}

∝ exp

{
−

<∑
8=1

(ℎw(x8) − H8)2
}
· exp

{
− �‖w‖2

}
=

<∏
8=1

exp

{
− (ℎw(x8) − H8)2

}
· exp

{
− �‖w‖2

}
∝

<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
)

51

A Probabilistic View of Linear Regression (II)

Minimize the loss function !(,ℓ2(ℎw) is equivalent to maximizing the

following objective function

exp(−!((ℎw)) ∝
<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
) (57)

I
∏<

8=1
N(H8 | ℎw(x8), 1

2
): likelihood function

∏<
8=1

?(H8 | x8 ;w)
I N(w | 0, 1

2�): prior distribution ?(w)

I Maximizing equation 57 is equivalent to the maximum a posteriori
estimation

?(F | {(x8 , H8)}<8=1
) =

?(w)∏<
8=1

?(H8 | x8 ;w)∏<
8=1

?(H8 | x8)
(58)

52

A Probabilistic View of Linear Regression (II)

Minimize the loss function !(,ℓ2(ℎw) is equivalent to maximizing the

following objective function

exp(−!((ℎw)) ∝
<∏
8=1

N(H8 | ℎw(x8),
1

2

) ·N(w | 0, 1

2�
) (57)

I
∏<

8=1
N(H8 | ℎw(x8), 1

2
): likelihood function

∏<
8=1

?(H8 | x8 ;w)
I N(w | 0, 1

2�): prior distribution ?(w)
I Maximizing equation 57 is equivalent to the maximum a posteriori

estimation

?(F | {(x8 , H8)}<8=1
) =

?(w)∏<
8=1

?(H8 | x8 ;w)∏<
8=1

?(H8 | x8)
(58)

52

Polynomial Regression

Some learning tasks require nonlinear predictors with single variable

G ∈ ℝ

ℎw(G) = F0 + F1G + · · · + F=G= (59)

where w = (F0 , F1 , . . . , F=) is a vector of coefficients of size = + 1.

53

Polynomial Regression (II)

Given training examples {(G8 , H8}<8=1
, the problem of polynomial

regression

ℎw(G) = F0 + F1G + · · · + F=G= (60)

can be converted to a linear regression problem


1 G1 · · · G=

1

1 G2 · · · G=
2

...
...

. . .
...

1 G< · · · G=<


·


F0

F1

...

F=


=


H1

H2

...

H<


(61)

We will use polynomial regression as an example in the next lecture

54

Polynomial Regression (II)

Given training examples {(G8 , H8}<8=1
, the problem of polynomial

regression

ℎw(G) = F0 + F1G + · · · + F=G= (60)

can be converted to a linear regression problem


1 G1 · · · G=

1

1 G2 · · · G=
2

...
...

. . .
...

1 G< · · · G=<


·


F0

F1

...

F=


=


H1

H2

...

H<


(61)

We will use polynomial regression as an example in the next lecture

54

ℓ2 Regularization and Overfitting

Polynomial Regression: Data

Consider the following polynomial regression problem

Data generation process

H = sin(G) + 0.3 ∗ & (62)

where & ∼N(0, 1)

56

Polynomial Regression: Data

Consider the following polynomial regression problem

Data generation process

H = sin(G) + 0.3 ∗ & (62)

where & ∼N(0, 1)
56

Regression: Model

I We choose the hypothesis class of polynomial functions with

degree 7

ℎw(G) = F0 + F1G + F2G
2 + · · · + F7G

7

(63)

where {F0 , F1 , F3 , . . . , F7} are the parameters

I The loss function: MSE with ℓ2 regularization

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (64)

where we can pick different values of � ∈ {0, 1, 100}

57

Regression: Model

I We choose the hypothesis class of polynomial functions with

degree 7

ℎw(G) = F0 + F1G + F2G
2 + · · · + F7G

7

(63)

where {F0 , F1 , F3 , . . . , F7} are the parameters

I The loss function: MSE with ℓ2 regularization

!(,ℓ2(ℎw) =
1

<

<∑
8=1

(ℎw(x8) − H8)2 + �‖w‖2 (64)

where we can pick different values of � ∈ {0, 1, 100}

57

Regression: Regularization Effects

The direct effect of regularization is to constrain the coefficient to be

close to zero

Larger regularization parameter, stronger effect

58

Regression: Regularization for Avoiding Overfitting

By forcing the coefficient to be smaller, regularization can help avoid

overfitting

Strong regularization effect will hurt the model performance.
59

Regression: Learning without Regularization

In the demo code, we chose � = 1

� = 0.001 to approximate the case

without regularization.

I Training accuracy: 99.89%

I Val accuracy: 52.21%

60

Classification: Weights without Regularization

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

I negative: woody allen can write and deliver a one liner as

well as anybody .

I positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

61

Classification: Weights without Regularization

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

I negative: woody allen can write and deliver a one liner as

well as anybody .

I positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

61

Classification: Weights without Regularization

Here are some word features and their classification weights from the

previous model without regularization. Positive weights indicate the

word feature contribute to positive sentiment classification and

negative weights indicate the opposite contribution

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

I negative: woody allen can write and deliver a one liner as

well as anybody .

I positive: soderbergh , like kubrick before him , may not

touch the planet ’s skin , but understands the workings of

its spirit .

61

Classification: Learning with Regularization

We chose � = 1

� = 10
2

I Training accuracy: 62.54%

I Val accuracy: 63.17%

62

Classification: Weights with Regularization

With regularization, the classification weights make more sense to us

interesting pleasure boring zoe write workings

Without Reg 0.011 -5.63 1.80 -5.68 -8.20 14.16

With Reg 0.16 0.36 -0.21 -0.057 -0.066 0.040

63

Summary

Important Concepts

I Perceptron

I The hypothesis class (page 11)

I Linearly separable cases (page 12)

I Perceptron updating rule (page 14)

I Logistic regression

I The hypothesis class (page 21 - 22)

I Gradient-based updating rule (page 27 - 29)

I Maximum likelihood estimation (page 32)

I Linear regression

I The hypothesis class (page 35)

I ℓ
2
regularization (page 46)

I Maximum a posteriori (MAP) estimation (page 52)

I ℓ2 Regularization and Overfitting

65

Reference

Berger, J. O. and Wolpert, R. L. (1988).

The likelihood principle.

IMS.

Bishop, C. M. (2006).

Pattern recognition and machine learning.
springer.

Friedman, J., Hastie, T., and Tibshirani, R. (2001).

The elements of statistical learning.
Springer.

66

	Overview
	Review: Linear Functions
	Perceptron
	Logistic Regression
	Linear Regression
	2 Regularization and Overfitting
	Summary

