
Mahalanobis Distance Based Non-negative Sparse Representation for Face
Recognition

Yangfeng Ji, Tong Lin, Hongbin Zha
Key Laboratory of Machine Perception (Ministry of Education),

School of EECS, Peking University,
Beijing 100871, China

Abstract

Sparse representation for machine learning has been ex-
ploited in past years. Several sparse representation based
classification algorithms have been developed for some ap-
plications, for example, face recognition. In this paper, we
propose an improved sparse representation based classifi-
cation algorithm. Firstly, for a discriminative representa-
tion, a non-negative constraint of sparse coefficient is added
to sparse representation problem. Secondly, Mahalanobis
distance is employed instead of Euclidean distance to mea-
sure the similarity between original data and reconstructed
data. The proposed classification algorithm for face recog-
nition has been evaluated under varying illumination and
pose using standard face databases. The experimental re-
sults demonstrate that the performance of our algorithm is
better than that of the up-to-date face recognition algorithm
based on sparse representation.

1 Introduction

Face recognition has attracted a great deal of attention in
computer vision and machine learning. After many years
of research, high performance can now be achieved under
controlled conditions. However when variations exist due
to extrinsic factors like pose and illumination, the perfor-
mance decreases remarkably. In this paper, we focus on the
problem of face recognition under the conditions of vary-
ing illumination and pose. We propose an improved sparse
representation based classification algorithm for face recog-
nition. The problem of sparse representation is to search the
most compact representation of data in terms of linear com-
bination of atoms in an overcomplete dictionary. In ma-
chine learning, sparse representation is popular in feature
extraction, classification, etc.

For classification, there are some works related to sparse
representation. Huang et al. [5] propose a sparse represen-

tation based classification algorithm combined with linear
discriminative analysis (LDA) for signal classification. The
experimental results show that the proposed method out-
performs the standard sparse representation and the stan-
dard discriminative methods in the case of corrupted sig-
nals. However, this algorithm can not be generalized to
multi-class classification easily. Wright et al. [11] exploit a
method of sparse representation for face recognition. They
investigate the problem of face recognition with the theory
of compressive sensing. By using the theory of compressive
sensing [2, 3], they propose a new classification algorithm,
named the sparse representation-based classification (SRC)
algorithm and show the performance on face recognition
under varying illumination and partial occlusion. However,
the SRC algorithm does not involve some special factors
in face recognition, such as similarity measure using more
suitable distance than Euclidean distance, etc.

To improve the performance of the sparse representa-
tion based classification, we propose a non-negative sparse
representation based classification algorithm using Maha-
lanobis distance, and its applications on face recognition.
First, we address the problem of sparse representation us-
ing the constraint of non-negative sparse coefficient to ob-
tain a discriminative representation. Second, we replace
Euclidean distance with Mahalanobis distance to measure
similarity between original data and reconstructed data.
Then, we reformulate the problem to be an equivalent `1-
regularized least square problem for obtaining its solution.
In experiments on face recognition, we compare the im-
proved algorithm with the SRC algorithm on two differ-
ent face databases, all experimental results show the per-
formance of the improved algorithm is better than that of
the SRC algorithm.

2 Non-negative Sparse Representation

For a discriminative representation, we require the sparse
coefficient to be non-negative. Therefore, for a given test



sample, components of coefficient indicate the contribu-
tions of training samples. Furthermore, Mahalanobis dis-
tance is employed to measure the similarity between orig-
inal data and reconstructed data, instead of Euclidean dis-
tance.

2.1 Sparse representation in subspace

Generally, given n high-dimensional data points A =
{a1, . . . , an}, some research on manifold learning, for in-
stance LLE [10], has proved that these data lie on a lower di-
mensional manifold. Any data point ai ∈ A can be approx-
imately represented by the linear combination of its neigh-
boring data points. This kind of linear representation can be
generalized to labeled data. Given data points {a1, . . . , an}
in one class, a new data point a∗ in the same class can be
represented as linear combination of {a1, . . . , an},

a∗ = β1a1 + . . . + βnan. (1)

In other words, given n training samples {a1, . . . , an}, their
linear combinations span a linear subspace X :

X = span{a1, . . . , an}.

A new sample a∗ in the same class approximately lie on this
subspace.

Linear representation for labeled data can be used in pat-
tern recognition. Given sufficient K classes training sam-
ples, a basic problem in pattern recognition is to correctly
determine the class which a new coming (test) sample be-
longs to. We arrange the nk training samples from the kth
class as columns of a matrix Ak = [ak,1, . . . , ak,nk

] ∈
Rm×nk . Then, we obtain the training sample matrix A =
[A1, . . . , AK ]. Under the assumption of linear representa-
tion, a test sample y ∈ Rm will approximately lie on the
linear subspace spanned by training samples,

y = β1,1a1,1 + . . . + β1,n1a1,n1

+ . . .

+βK,1aK,1 + . . . + βK,nK
aK,nK

. (2)

or, in matrix form,

y = Ax ∈ Rm, (3)

where x is a coefficient vector. For accurate reconstruction
of sample y in class k,

x = [0, . . . , 0, βk,1, . . . , βk,nk
, 0, . . . , 0]T ∈ Rn.

If K is large, x will be sufficient sparse. However, for many
practical problems, accurate reconstruction is nearly impos-
sible.

If m < n, Eq.(2) is under-determined, and its solution is
not unique. This motivates us to solve the following opti-
mization problem for a sparse solution:

x̂ = arg min
x

‖x‖0 subject to Ax = y, (4)

where ‖ · ‖0 denotes the `0-norm, which counts the num-
ber of nonzero entries in a vector. However, the problem of
finding the sparse solution of Eq.(4) is NP-hard, and diffi-
cult to solve.

The theory of compressive sensing [2, 3] reveals that if
the solution x is sparse enough, we can solve the following
convex relaxed optimization problem to obtain approximate
solution:

x̂ = arg min
x

‖x‖1 subject to Ax = y (5)

Furthermore, supposing that the observations are inaccu-
rate, we should relax the constraint in Eq.(5) and have the
following optimization problem:

x̂ = arg min
x

‖x‖1 subject to ‖Ax− y‖2 ≤ ε (6)

where ε is the tolerance of reconstruction error.
Regularization is one of the most popular methods to

deal with constrained optimization problems, for instance,
in the theory of Support Vector Machine. For Eq.(6), that is

x̂ = arg min
x

‖x‖1 + γ‖Ax− y‖22. (7)

where γ is a weight to make a trade-off between reconstruc-
tion error and sparsity in the representation.

2.2 Non-negative constraint for sparse coefficient

Sparse representation for classification is different from
that for signal reconstruction. In signal processing, an orig-
inal signal y should be reconstructed as accurately as possi-
ble. However, in classification, a discriminative representa-
tion is more important than reconstruction accuracy.

For a discriminative representation, we require that co-
efficient x should indicate contributions of all training sam-
ples to a given test sample. Therefore, we add constraint
x ≥ 0 to Eq.(7)

x̂ = arg min
x:x≥0

‖x‖1 + γ‖Ax− y‖22, (8)

where x̂ is sparse, in which all elements are non-negative.
The sparse representation from Eq.(8) avoids “negative”
contribution of some training samples. In this way, for a
given test sample, the similar training samples can be found
from sparse representation.
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2.3 Similarity measure using Mahalanobis dis-
tance

For measure the similarity between original data and re-
constructed data, We employ Mahalanobis distance instead
of Euclidean distance. By introducing Mahalanobis dis-
tance, we obtain a generalized distance measure for face
recognition, which can embody different weights on differ-
ent components of feature vector. Mahalanobis Distance
has been proved as a better similarity measure than Eu-
clidean distance, when it comes to pattern recognition prob-
lems, for instance, face recognition [9].

Given two data points v1, v2 ∈ Rm, their Mahalanobis
distance is given by:

dM (v1, v2) = ‖v1 − v2‖M

=
√

(v1 − v2)T M(v1 − v2), (9)

where M ∈ Rm×m is a positive definite matrix.
Using the definition of Mahalanobis distance, the dis-

tance between original data y and reconstructed data Ax is

dM (Ax, y) = ‖Ax− y‖M =
√

(Ax− y)T M(Ax− y).

The objective function with Mahalanobis distance can be
formulated as follows:

x̂ = arg min
x:x≥0

‖x‖1 + γ‖Ax− y‖2M . (10)

There are three different types of positive definite M in
the definition of Mahalanobis distance:

• M is any positive definite matrix.

• M is a diagonal matrix. If the type of M is diagonal,
M gives different components with different weights.

• M is a scalar multiple of the identity matrix I , M =
σI , where σ > 0. If M = σI , Eq.(10) is equivalent to
Eq.(8) with regularization coefficient σγ.

In this paper, the matrix M is determined by the importance
of components of feature vectors. Moreover, we can ingore
the correlation among different dimensions.

3 Algorithm

Using the Cholesky factorization, the problem of Maha-
lanobis distance based non-negative sparse representation
can be solved by a standard optimization algorithm. Then,
the classification algorithm is designed based on the idea of
finding the minimal reconstruction error [11].

3.1 Algorithm for solving non-negative `1-
regularized least square

Since M is a positive definite matrix, the Cholesky fac-
torization of M is

M = LT L, (11)

where U is a lower triangular matrix with positive diagonal
entries. From Eq.(11), the objective function in Eq.(10) can
be formulated as:

x̂ = arg min
x:x≥0

‖x‖1 + γ((Ax− y)T LT L(Ax− y))

= arg min
x:x≥0

‖x‖1 + γ((LAx− Ly)T (LAx− Ly))

= arg min
x:x≥0

‖x‖1 + γ‖LAx− Ly)‖2. (12)

Set A′ = LA and y′ = Ly. Given parameter γ > 0, the
problem is equal to the following problem:

x̂ = arg min
x:x≥0

‖x‖1 + γ‖A′x− y′)‖22

= arg min
x:x≥0

λ‖x‖1 + ‖A′x− y′‖22, (13)

where λ = γ−1. Eq.(13) is a non-negative `1-regularized
least square problem, which can be solved by second-order
cone programming [1, 8].

3.2 Recognition algorithm

The recognition algorithm is inspired by the SRC algo-
rithm proposed in [11]. Given a test sample y, we first com-
pute its sparse coefficient x̂. Then, we determine the class
of this test sample from its reconstruction error between this
test sample and the training samples of class k,

Ek(x̂) = ‖Aδk(x̂)− y‖M , (14)

where residual error is computed using Mahalanobis dis-
tance. For each class k, δk(x) : Rn → Rn is the character-
istic function which selects the coefficients associated with
the kth class. The class C(y) which test sample y belongs
to is determined by

C(y) = arg min
k

Ek(x̂). (15)

The whole algorithm of our method is summarized in
algorithm 1.

4 Experiments

In experiments, we test our algorithm on face recognition
with two face databases: the extended Yale face database B
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Algorithm 1 Our algorithm
Input: Test sample y, training matrix A, parameter γ
1: Normalize the columns of A using `2 norm
2: Solve

x̂ = arg min
x:x≥0

‖x‖1 + γ‖Ax− y‖2M

using an equivalent non-negative `1-regularized least
square problem
3: Compute reconstruction error Ek(k = 1, ...,K):

Ek(x̂) = ‖Aδk(x̂)− y‖M

Output: C(y), where C(y) = arg mink Ek(x̂)

and the Sheffield face database. For feature extraction, we
downsample face images to some given sizes and reshape
them to be column vectors. Then we arrange all column
vector of training samples to be a matrix A in Eq.(10). For
a test sample, y, our algorithm and the SRC algorithm [11]
are employed to obtain the results of recognition.

4.1 Illumination variant database — the extended
Yale face database B

First, we evaluate the performance of our algorithm on
a cropped version of the Extended Yale Face Database
B [7]. There are 2,427 face images of 38 individuals in
this database. All images are cropped into size of 192×168
pixels. There are different lighting conditions on each im-
age for each subject(see Figure 1 for some examples). We
randomly choose half of images in each class for training
and the other images for testing. For feature extraction, we
downsample all images to six different sizes: 30, 56, 72, 90,
110 and 120.

We compare the performance of our algorithm with that
of the SRC algorithm [11] on different dimensions of fea-
tures. As illustrated in Figure 2, our algorithm has bet-
ter performance than the SRC algorithm. The best per-
formance of our algorithm in this experiment is 96.74%,
while the best performance of the SRC algorithm is 95.05%.
As shown in this experiment, the classification accuracy is
improved by non-negative coefficient constraint and Maha-
lanobis distance.

4.2 Pose variant database — the Sheffield face
database

In this section, the algorithm performance is tested on the
subset of Sheffield (previously UMIST) face database [4].
This subset of Sheffield face database consists of 495 face
images of 18 individuals. Faces in the database cover range

Figure 1. Sample faces from different persons
under different illumination in the extended
Yale face database B

Figure 2. Comparsion of recognition rates of
our algorithm and the SRC algorithm on the
extended Yale face database B

of poses from frontal view to profile. All persons in this
database cover a mixed range of race, sex and age. Some
images from Figure 3 are examples of this database.

Features are extracted from all original images before
preforming face recognition using downsampling. In this
experiment, we downsample all images from size of 112×
96 to different sizes, such as 6× 5, 8× 7, 9× 8, etc. Then,
all downsampling images are reshaped to column vectors
as feature vectors. We divide all images to training samples
and test samples: 94 training images and 401 test images.
For each subject, there are about 5−9 images from different
poses for training, and the other images for testing.

We also compare the performance of our algorithm with
that of the SRC algorithm on different dimensions of fea-
ture. In figure 4, we can see that our algorithm is slightly
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better than the SRC algorithm. Ranging from different di-
mension, the best performance of our algorithm is 97.51%,
compared with 96.26% of the SRC algorithm.

Note that, when the dimension of feature continues to
increase, the performance of the SRC algorithm decreases
remarkably. For example, when the dimension of feature
vector is 81, the recognition rate of the SRC algorithm is
82.54%. The recognition rate of our algorithm is 96.51% at
the same dimension.

Figure 3. Sample faces from different per-
sons under different pose in the Sheffield face
database

Figure 4. Comparsion of recognition rates of
our algorithm and the SRC algorithm on the
Sheffield face database

5 Conclusion

In this paper, we propose an improved classification al-
gorithm based on non-negative sparse representation with

Mahalanobis distance. For a discriminative representation,
a non-negative constraint of sparse coefficient is added.
Moreover, Mahalanobis distance is used as a measure of
image similarity instead of Euclidean distance in feature
space. Then, we build a connection between this problem
and non-negative `1-regularized least square problem. The
experimental results on face recognition show that the per-
formance of our algorithm is better than the SRC algorithm.
In the future, we will apply the framework of Mahalanobis
distance based non-negative sparse representation to other
fields, such as, object detection, etc.
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