
Closing the Gap:
Domain Adaptation from Explicit to Implicit Discourse Relations

Yangfeng Ji Gongbo Zhang Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

{jiyfeng,gzhang64,jacobe}@gatech.edu

Abstract
Many discourse relations are explicitly
marked with discourse connectives, and
these examples could potentially serve as a
plentiful source of training data for recog-
nizing implicit discourse relations. How-
ever, there are important linguistic differ-
ences between explicit and implicit dis-
course relations, which limit the accuracy
of such an approach. We account for
these differences by applying techniques
from domain adaptation, treating implic-
itly and explicitly-marked discourse rela-
tions as separate domains. The distribu-
tion of surface features varies across these
two domains, so we apply a marginalized
denoising autoencoder to induce a dense,
domain-general representation. The label
distribution is also domain-specific, so we
apply a resampling technique that is simi-
lar to instance weighting. In combination
with a set of automatically-labeled data,
these improvements eliminate more than
80% of the transfer loss incurred by train-
ing an implicit discourse relation classifier
on explicitly-marked discourse relations.

1 Introduction

Discourse relations reveal the structural orga-
nization of text, potentially supporting applica-
tions such as summarization (Louis et al., 2010;
Yoshida et al., 2014), sentiment analysis (Soma-
sundaran et al., 2009), and coherence evaluation
(Lin et al., 2011). While some relations are sig-
naled explicitly with connectives such as how-
ever (Pitler et al., 2008), many more are im-
plicit. Expert-annotated datasets of implicit dis-
course relations are expensive to produce, so it

would be preferable to use weak supervision, by
automatically labeling instances with explicit con-
nectives (Marcu and Echihabi, 2003).

However, Sporleder and Lascarides (2008)
show that models trained on explicitly marked ex-
amples generalize poorly to implicit relation iden-
tification. They argued that explicit and implicit
examples may be linguistically dissimilar, as writ-
ers tend to avoid discourse connectives if the dis-
course relation could be inferred from context
(Grice, 1975). Similar observations are made by
Rutherford and Xue (2015), who attempt to add
automatically-labeled instances to improve super-
vised classification of implicit discourse relations.

In this paper, we approach this problem from
the perspective of domain adaptation. Specifically,
we argue that the reason that automatically-labeled
examples generalize poorly is due to domain mis-
match from the explicit relations (source domain)
to the implicit relations (target domain). We pro-
pose to close the gap by using two simple meth-
ods from domain adaptation: (1) feature represen-
tation learning: mapping the source domain and
target domain to a shared latent feature space; (2)
resampling: modifying the relation distribution in
the explicit relations to match the distribution over
implicit relations. Our results on the Penn Dis-
course Treebank (Prasad et al., 2008) show that
these two methods improve the performance on
unsupervised discourse relation identification by
more than 8.4% on average F1 score across all
relation types, an 82% reduction on the transfer
loss incurred by training on explicitly-marked dis-
course relations.

2 Related Work

Marcu and Echihabi (2003) train a classifier for
implicit intra-sentence discourse relations from



explicitly-marked examples in the rhetorical struc-
ture theory (RST) treebank, where the relations
are automatically labeled by their discourse con-
nectives: for example, labeling the relation as
CONTRAST if the connective is but. However,
Sporleder and Lascarides (2008) argue that explic-
itly marked relations are too different from im-
plicit relations to serve as an adequate supervision
signal, obtaining negative results in segmented
discourse representation theory (SDRT) relations.

More recent work has focused on the Penn Dis-
course Treebank (PDTB), using explicitly-marked
relations to supplement, rather than replace, a la-
beled corpus of implicit relations. For example,
Biran and McKeown (2013) collect word pairs
from arguments of explicit examples to help the
supervised learning on implicit relation identifica-
tion. Lan et al. (2013) present a multi-task learning
framework, using explicit relation identification as
auxiliary tasks to help main task on implicit re-
lation identification. Rutherford and Xue (2015)
explore several selection heuristics for adding
automatically-labeled examples from Gigaword to
their system for implicit relation detection, obtain-
ing a 2% improvement in Macro-F1. Our work
differs from these previous efforts in that we fo-
cus exclusively on training from automatically-
labeled explicit instances, rather than supplement-
ing a training set of manually-labeled implicit ex-
amples.

Learning good feature representations (Ben-
David et al., 2007) and reducing mismatched la-
bel distributions (Joshi et al., 2012) are two main
ways to make a domain adaptation task successful.
Structural correspondence learning is an early ex-
ample of representation learning for domain adap-
tation (Blitzer et al., 2006); we build on the more
computationally tractable approach of marginal-
ized denoising autoencoders (Chen et al., 2012).
Instance weighting is an approach for correct-
ing label distribution mismatch (Jiang and Zhai,
2007); we apply a simpler approach of resampling
the source domain according to an estimate of the
target domain label distribution.

3 Domain Adaptation for Implicit
Relation Identification

We employ two domain adaptation techniques:
learning feature representations, and resampling to
match the target label distribution.

3.1 Learning feature representation:
Marginalized denoising autoencoders

The goal of feature representation learning is to
obtain dense features that capture feature correla-
tions between the source and target domains. De-
noising autoencoders (Glorot et al., 2011) do this
by first “corrupting” the original data, x1, . . . ,xn

into x̃1, . . . , x̃n, either by adding Gaussian noise
(in the case of real-valued data) or by randomly ze-
roing out features (in the case of binary data). We
can then learn a function to reconstruct the origi-
nal data, thereby capturing feature correlations and
improving resilience to domain shift.

Chen et al. (2012) propose a particularly sim-
ple and elegant form of denoising autencoder, by
marginalizing over the noising process. Their
single-layer marginalized denoising autoencoder
(mDA) solves the following problem:

min
W

Ex̃i|xi
[‖xi −Wx̃i‖2] (1)

where the parameter W ∈ Rd×d is a projection
matrix. After learning the projection matrix, we
use tanh(Wx) as the representation for our rela-
tion identification task.

Usually, xi ∈ Rd is a sparse vector with more
than 105 dimensions. Solving the optimization
problem defined in equation 1 will produce a
d × d dense matrix W, and is prohibitively ex-
pensive. We employ the trick proposed by Blitzer
et al. (2006) to select κ pivot features to be re-
constructed. We then split all features into non-
overlapping subsets of size ≤ K. Then, a set of
projection matrices are learned, so as to transform
each feature subset to the pivot feature set. The
final projection matrix W is the stack of all pro-
jection matrices learned from the feature subsets.

3.2 Handling mismatched label distributions:
Resampling with minimal supervision

There is a notable mismatch between the relation
distributions for implicit and explicitly-marked
discourse relations in the Penn Discourse Tree-
bank: as shown in Figure 1, the EXPANSION and
CONTINGENCY relations comprise a greater share
of the implicit relations, while the TEMPORAL

and COMPARISON relations comprise a greater
share of the explicitly-marked discourse relations.
Such label distribution mismatches can be a ma-
jor source of transfer loss across domains, and
therefore, reducing this mismatch can be an easy
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Figure 1: The relation distributions of training ex-
amples from the source domain (explicitly-marked
relations) and target domain (implicit relations) in
the PDTB.

way to obtain performance gains in domain adap-
tation (Joshi et al., 2012). Specifically, our goal
is to modify the relation distribution in the source
domain (explicitly-marked relations) and make it
as similar as possible to the target domain (im-
plicit relations). Given the label distribution from
the target domain, we resample training examples
from the source domain with replacement, in or-
der to match the label distribution in the target do-
main. As this requires the label distribution from
the target domain, it is no longer purely unsuper-
vised domain adaptation; instead, we call it resam-
pling with minimal supervision.

It may also be desirable to ensure that the source
and target training instances are similar in terms
of their observed features; this is the idea behind
the instance weighting approach to domain adap-
tation (Jiang and Zhai, 2007). Motivated by this
idea, we require that sampled instances from the
source domain have a cosine similarity of at least
τ with at least one target domain instance (Ruther-
ford and Xue, 2015).

4 Experiments

Our experiments test the utility of the two do-
main adaptation methods, using the Penn Dis-
course Treebank (Prasad et al., 2008) and some
extra-training data collected from a external re-
source.

4.1 Experimental setup
Datasets The test examples are implicit rela-
tion instances from section 21-22 in the PDTB.
For the domain adaptation setting, the training
set consists of the explicitly-marked examples ex-
tracted from sections 02-20 and 23-24, and the
development set consists of the explicit relations
from sections 21-22. All relations in the explicit
examples are automatically labeled by using the

connective-to-relation mapping from Table 2 in
(Prasad et al., 2007), where we only keep the
majority relation type for every connective. For
each identified connective, we use its annotated
arguments in the PDTB. As an upper bound, we
also train a supervised discourse relation classi-
fier, using the implicit examples in sections 02-20
and 23-24 as the training set, and using sections
00-01 as the development set. Following prior
work (Pitler et al., 2009; Park and Cardie, 2012;
Biran and McKeown, 2013), we consider the first-
level discourse relations in the PDTB — Temporal
(TEMP.), Comparison (COMP.), Expansion (EXP.)
and Contingency (CONT.). We train binary classi-
fiers and report F1 score on each binary classifica-
tion task. Extension of this approach to multi-class
classification is important, but since this is not the
setting considered in most of the prior research,
we leave it for future work.

The true power of learning from automatically
labeled examples is that we could leverage much
larger datasets than hand-annotated corpora such
as the Penn Discourse Treebank. To test this idea,
we collected 1,000 news articles from CNN.com
as extra training data. Explicitly-marked dis-
course relations from this data are automatically
extracted by matching the PDTB discourse con-
nectives (Prasad et al., 2007). For this data, we
also need to extract the arguments of the iden-
tified connectives: for every identified connec-
tive, the sentence following this connective is la-
beled as Arg2 and the preceding sentence is la-
beled as Arg1, as suggested by Biran and McKe-
own (2013). In a pilot study we found that larger
amounts of additional training data yielded no fur-
ther improvements, which is consistent with the
recent results of Rutherford and Xue (2015).

Model selection We use a linear support vec-
tor machine (Fan et al., 2008) as the classifica-
tion model. Our model includes five tunable pa-
rameters: the number of pivot features κ, the
size of the feature subset K, the noise level for
the denoising autoencoder q, the cosine similar-
ity threshold for resampling τ , and the penalty pa-
rameter C for the SVM classifier. We consider
κ ∈ {1000, 2000, 3000} for pivot features and
C ∈ {0.001, 0.01, 0.1, 1.0, 10.0} for penalty pa-
rameters, q ∈ {0.90, 0.95, 0.99} for noise levels.
To reduce the free parameters, we set K = 5κ
and simply fix the cosine similarity threshold τ =



Relations

Surface Features +Rep. Learning +Resampling TEMP. COMP. EXP. CONT. Average F1

Implicit→ Implicit
1. FULL 24.15 28.87 68.84 43.45 41.32
Explicit [PDTB]→ Implicit
2. FULL No No 17.13 20.54 50.55 36.14 31.04
3. FULL No Yes 15.38 23.88 62.04 35.29 34.14
4. FULL Yes No 17.53 22.77 50.85 36.43 31.90
5. FULL Yes Yes 17.05 22.00 63.51 38.23 35.20

6. PIVOT No No 17.33 23.89 53.53 36.22 32.74
7. PIVOT No Yes 17.73 25.39 62.65 36.02 35.44
8. PIVOT Yes No 18.66 25.86 63.37 38.87 36.69
9. PIVOT Yes Yes 19.26 25.74 68.08 41.39 38.62
Explicit [PDTB + CNN]→ Implicit
10. PIVOT Yes Yes 20.35 26.32 68.92 42.25 39.46

Table 1: Performance of cross-domain learning for implicit discourse relation identification.

0.85; pilot studies found that results are not sensi-
tive to the value of τ across a range of values.

Features All features are motivated by prior
work on implicit discourse relation classification:
from each training example with two arguments,
we extract (1) Lexical features, including word
pairs, the first and last words from both argu-
ments (Pitler et al., 2009); (2) Syntactic features,
including production rules from each argument,
and the shared production rules between two argu-
ments (Lin et al., 2009); (3) Other features, includ-
ing modality, Inquirer tags, Levin verb classes, and
argument polarity (Park and Cardie, 2012). We
re-implement these features as closely as possible
to the cited works, using the Stanford CoreNLP
Toolkit to obtain syntactic annotations (Manning
et al., 2014).

The FULL feature set for domain adaptation
is constructed by collecting all features from the
training set, and then removing features that oc-
cur fewer than ten times. The PIVOT feature
set includes κ high-frequency features from the
FULL feature set. To focus on testing the domain
adaptation techniques, we use the same FULL and
PIVOT set for all four relations, and leave fea-
ture set optimization for each relation as a future
work (Park and Cardie, 2012). To obtain the up-
per bound, we employ the same feature categories
and frequency threshold to extract features from
the in-domain data, hand-annotated implicit dis-
course relations. To include the representations

from the marginalized denoising autoencoder for
relation identification, we concatenate them with
the original surface feature representations of the
same examples.

4.2 Experimental results

In experiments, we start with surface feature rep-
resentations as baselines, then incorporate the two
domain adaptation techniques incrementally. As
shown in line 2 of Table 1, the performance is
poor if directly applying a model trained on the ex-
plicit examples with the FULL feature set, which
is consistent with the observations of Sporleder
and Lascarides (2008): there is a 10.28% abso-
lute reduction on average F1 score from the up-
per bound obtained with in-domain supervision
(line 1). With mDA, the overall performance in-
creases by 0.86% (line 4); resampling gives a fur-
ther 4.16% improvement mainly because of the
performance gain on the EXP. relation (line 5).
The resampling method itself (line 3) also gives
a better overall performance then mDA (line 4).
However, the F1 scores on the TEMP. and CONT.
are even worse than the baseline (line 2).

Surface representations with the FULL feature
set were found to cause serious overfitting in the
experiments. To deal with this problem, we pro-
pose to use only κ pivot features, which gives
a stronger baseline of the cross-domain relation
identification, as shown in line 6. Then, by in-
corporating resampling and feature representation



learning individually, the average F1 increases
from 32.74% to 35.44% (line 7) and 36.69% (line
8) respectively. The combination of these two
domain adaptation techniques boosts the average
F1 further to 38.62% (line 9). The additional
CNN training data further improves performance
to 39.46% (line 10). This represents an 8.42% im-
provement of average F1 from the original result
(line 2), for more than 80% reduction on the trans-
fer loss incurred by training on explicit discourse
relations.

An additional experiment is to use automatic ar-
gument extraction in both the PDTB and the CNN
data, which would correspond to more truly un-
supervised domain adaptation. (Recall that in the
CNN data, we used adjacent sentences as argu-
ment spans, while in the PDTB data, we use ex-
pert annotations.) When using adjacent sentences
as argument spans in both datasets, the average
F1 is 38.52% for the combination of representa-
tion learning and resampling. Compared to line
10, this is a 0.94% performance drop, indicating
the importance of argument identification in the
PDTB data. In future work we may consider bet-
ter heuristics for argument extraction, such as ob-
taining automatically-labeled examples only from
those connectors for whom the arguments usu-
ally are the adjacent sentences; for example, the
connector nonetheless usually connects adjacent
spans (e.g., Bob was hungry. Nonetheless he gave
Tina the burger.), while the connector even though
may connect two spans that follow the connector
in the same sentence (e.g., Even though Bob was
hungry, he gave Tina the burger.).

5 Conclusion

We have presented two methods — feature rep-
resentation learning and resampling — from do-
main adaptation to close the gap of using explicit
examples for unsupervised implicit discourse re-
lation identification. Experiments on the PDTB
show the combination of these two methods elimi-
nates more than 80% of the transfer loss caused by
training on explicit examples, increasing average
F1 from 31% to 39.5%, against a supervised up-
per bound of 41.3%. Future work will explore the
combination of this approach with more sophis-
ticated techniques for instance selection (Ruther-
ford and Xue, 2015) and feature selection (Park
and Cardie, 2012; Biran and McKeown, 2013),
while also tackling the more difficult problems of

multi-class relation classification and fine-grained
level-2 discourse relations.
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